A Difference in Aerobic and Anaerobic Energy Costs During Weightlifting

Sarah Shapiro
University of Southern Maine

Deline Dwelly
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/thinking_matters

Part of the [Physical Therapy Commons](https://digitalcommons.usm.maine.edu/physicaltherapy_commons), and the [Sports Sciences Commons](https://digitalcommons.usm.maine.edu/sports_science_commons)

Recommended Citation
https://digitalcommons.usm.maine.edu/thinking_matters/19

This Poster Session is brought to you for free and open access by the Student Scholarship at USM Digital Commons. It has been accepted for inclusion in Thinking Matters Symposium Archive by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
A Difference in Aerobic and Anaerobic Energy Costs During Weightlifting
Sarah Shapiro, Deline Dwelly
Faculty mentor: CB Scott

Abstract
Energy expenditure is usually estimated by total oxygen uptake. However, with weightlifting, very little oxygen is utilized during the lift. The majority of oxygen uptake happens during recovery (Excess Post-Exercise Oxygen Consumption, EPOC). The purpose of this study is to determine the significance of the anaerobic and EPOC phases during weightlifting exercises in estimation of total energy cost. We gathered data from 42 subjects (60 averaged trials) aging between 18 and 35 years. Each subject chose a comfortable weight and lifted to a cadence of 1.5 sec up and 1.5 sec down. Tests were given on two different occasions. We used a metabolic cart to collect oxygen consumption (VO2), and EPOC measurements. Blood lactate measurements were taken to estimate anaerobic energy costs. Our data revealed that the contribution of anaerobic and EPOC phases, had the most significant impact on the total energy cost estimation.

Methods
Our subjects consisted of males and females between the ages of 18-30. Each subject was asked to come in for three separate visits. On the first visit, the height and weight of the subject was taken and the lifting weight was determined. The practice run was completed to ensure proper lifting weight and form following the cadence set to 1.5 sec up and 1.5 sec down. On the second and third visit, the subjects were attached to a metabolic cart to determine oxygen uptake during exercise and recovery. A finger prick was taken before and after exercise to measure the level of lactate in the blood. Both oxygen uptake and blood lactate were used to estimate aerobic and anaerobic energy costs, respectively. After 5 min of rest, the subject exercised for 30 sec., then recovered until resting metabolic levels were achieved.

Results/Discussion
The data shows that the contribution of the anaerobic component to the total energy cost during weightlifting exercises is significant. Although there is not a significant difference between the anaerobic and EPOC (recovery oxygen uptake) phases, it is clear, that they both greatly influence the final estimation of caloric expenditure.

As you can see, the standard deviations are quite high. This is due to the variability when comparing weightlifting exercises.

Based on this research and collected data, we suggest that the anaerobic and post exercise components of weightlifting must be taken into consideration when estimating total energy expenditure.