Spring 2014

Wind Pattern Effects on the Southern Shetland Islands

Helen Pottle
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/thinking_matters

Part of the Atmospheric Sciences Commons, and the Environmental Monitoring Commons

Recommended Citation
Pottle, Helen, "Wind Pattern Effects on the Southern Shetland Islands" (2014). Thinking Matters Symposium Archive. 18.
https://digitalcommons.usm.maine.edu/thinking_matters/18

This Poster Session is brought to you for free and open access by the Student Scholarship at USM Digital Commons. It has been accepted for inclusion in Thinking Matters Symposium Archive by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
Wind Pattern Effects on the Southern Shetland Islands

By: Helen Pottle
Faculty Mentor: Matthew Bampton, Geography – Anthropology, USM

Abstract

The Shetland Islands, northeast of Scotland, experienced an unusually extreme storm that caused unique sand shifting patterns and sand dune formations that resulted in the destruction of the Village of Broa. There is little existing information about the weather and terrain of the Shetland Islands during the extreme storm that was estimated to have occurred between 1650 and 1670. WindNinja, a wind model originally developed for wildland fire application, was used to understand the wind patterns that may have caused the unique sand patterns and resulting destruction. It incorporates existing terrain elevations and vegetation as well as average wind speed and direction to produce spatially varying wind patterns. Because unique sand patterns were created by the storm in question, it was determined that the prevailing southwest wind was not the cause of the sand patterns, but the prevailing wind was used as the basis to analyze the reliability of the model. Analyzing the model output of several average wind directions and speeds aided in the determination of potential causes of the sand patterns and dune formations. The results of the model suggest that the output depends most significantly on the average wind direction input and the ground terrain as defined by the digital elevation model.

Introduction

Northern Scotland, including the Shetland Islands, is the windiest area in the United Kingdom.

Data & Methodology

The wind modeling software, WindNinja, was developed by the Rocky Mountain Research Station’s Fire Sciences Laboratory to compute spatially varying wind fields for wildland fire applications. The software has been repurposed in this project to simulate terrain effects on wind flow in the Shetland Islands.

WindNinja simulates the spatial variation of wind for one instant in time. The required inputs include:

- Digital Elevation Model
- Domain Average Wind Speed – 150 mph
- Domain Averaged Wind Direction - Varied
- Dominant Vegetation - Grassland
- Output Resolution – Fine (71m)

The WindNinja algorithms manipulate the input data to produce spatially varying wind fields with unique wind vector direction and wind speed, as seen in the image to the right.

Results

The windiest season is winter and from December to February the Shetland Islands frequently experience storms with wind gusts between 100 and 150 miles per hour.

The southern tip of the Shetland Islands experienced a large storm in the mid-1600s that resulted a significant damage to the village of Broa and a series of unique sand formations. Wind modeling software was used to simulate different wind patterns (speed and direction) that may have caused the destruction and sand shifting patterns.

The wind model results can be used in conjunction with additional research to build a plausible hypothesis for the cause of the destruction and sand formations.

Conclusions

The southern tip of the Shetland Islands, as seen in Figure 8, was the area investigated by this project.

Figure 9 shows the results of the model simulation for the area of interest under the prevailing southwest wind condition. This condition shows reduced wind speeds in the existing area sand inundation.

Sand dunes form under the following conditions:

1. Granules accumulate in an area devoid of vegetation (i.e. beach).
2. Significant wind speeds transport sand granules.
3. Granules settle into drifts and dunes as they accumulate against a stable barrier to the wind, such as vegetation or rocks.

References


Acknowledgements

Poster completed in partial fulfillment of the requirements for Research Applications in GIS GEC 658. A great thank you is due to my class members who helped guide this project through completion.