Successful Approaches to Change-MaineDOT’s Experience (2015 State of the Bay Presentation)

Charlie Hebson
Maine Department of Transportation

Follow this and additional works at: https://digitalcommons.usm.maine.edu/cbep-presentations

Recommended Citation
Successful Approaches to Change: MaineDOT’s Experience

Charles Hebson
MaineDOT / Environmental Office
16 State House Station
Augusta ME 04333-0016

presented at
Our Changing Bay 2015
Casco Bay – State of the Bay Conference
Double Tree – Hilton, South Portland, ME
13 October 2015
As a famous climate scientist once said ...
The future ain’t what it used to be.
Some DOT Challenges
Hydraulic Structures

* **Assets:**
 * Thousands of bridges (span $S \geq 10$ ft)
 * Thousands of large culverts ($5 \leq S < 10$ ft)
 * Many thousands of cross-culverts ($S < 5$ ft)

* **Exposures:**
 * Coastal: seal-level rise (SLR)
 * Inland: riverine runoff peak flow events

* **Projects:**
 * Individual assets
 * Corridor reconstruction

* **Design Life of New Structures**
 * 100 YRS +
Some Very Simplistic Starting Assumptions

* Bridges: they are generally big, climate change not a worry
* Culverts: existing structures tend to be undersized by current standard
* Sea Level Rise: elevation is the issue, not capacity
* Inland Peak Flows: asset capacity is the primary issue
* Asset Replacement:
 * Due to poor condition or chronic hydrologoc failure
 * Not according to some prediction of future failure
MaineDOT Efforts

- Data & Engineering Methods
 - Cooperative projects with USGS
 - Internal design policy
- Planning, Research & Pilot Studies
 - FHWA sponsorship
 - Catalysis & GEI projects (Sam Merrill & collaborators)
 - Decision Support Tool for Enhanced Early Project Scoping and Program / Project Risk Identification
* Cross Culverts ($S < 5$ ft)
 * Design Flow Q_{50}
 * Allowable Headwater $H_w/D \leq 1.5$
 * *(former standard for all culverts)*

* Large Culverts ($5 \leq S < 10$)
 * Design Flow Q_{100}
 * $Q_{100} 20\% > Q_{50}$
 * Allowable Headwater $H_w/D \leq 1$
 * **Result: bigger structures**

- Complemented by environmental “bankfull sizing” for fish passage.
- Protection against $Q_{100}++$.
- Relatively few culverts on “real streams” sized purely for hydraulic capacity.
Benefits of New Standard

* Enhanced protection of assets
 * Protection against increased flows due to climate change
 * Design for Q_{100} now, get Q_{50} protection 50 – 100 yrs from now
* Most useful, biggest impact on “production work”
 * Smaller structures, routine work – lots of them!
* Improved fish passage
 * Reducing & eliminating undersized culverts
* “We’re doing something!”
* Better than interim standard – strong first step - but not final story
 * Ideally – still need to capture future climate expectations
 * Which change scenario plays out?
 * Uncertainty in predictions within that scenario
 * Address MaineDOT system in some fashion
Some Ideas

* Total DOT asset base too big for meaningful assessment
 * Break it up into digestible portions
 * Corridors
 * Vulnerable geographic settings
 * Leverage local experience and staff knowledge
 * Efficient, effective screening

* Risk-Based Design (vs current Frequency-Based Design)
 * Goal: Balance Underdesign against Overdesign in a Rational Manner
 * Minimize total expected project cost over asset lifetime

* Challenges & Limitations:
 * Data
 * Models
Corridor Selections

Route 2 - Mercer

Courtesy of Sam Merrill

Route 4 - Berwicks
Depth Damage Functions for Each Candidate Structure

<table>
<thead>
<tr>
<th>Elev.</th>
<th>Damage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16’</td>
<td>Extreme</td>
<td>$E/event</td>
</tr>
<tr>
<td>12-14’</td>
<td>Severe</td>
<td>$E/event</td>
</tr>
<tr>
<td>11-12’</td>
<td>Serious</td>
<td>$D/event</td>
</tr>
<tr>
<td>8-11’</td>
<td>Moderate</td>
<td>$C/event</td>
</tr>
<tr>
<td>7-8’</td>
<td>Slight</td>
<td>$B/event</td>
</tr>
<tr>
<td>0-7’</td>
<td>Negligible</td>
<td>$A/event</td>
</tr>
</tbody>
</table>

Depth-Damage Function

D = 7’

Waterway

Base Elevation

Courtesy of Sam Merrill
Transformation of Hydrologic Probabilities to Damage Probabilities

Log-Normal Probability Plot

Return Period (yrs)

Q_T (ft3/s)
Sort of like the Cumulative Distribution Fn – CDF “showroom product”

Probability Density Fn – PDF “under the hood”

Alternative Representations of the Same Underlying Probability Function
Culvert Performance Curve
Flow – Depth Function

For D = 7’
Transform the Flow PDF to a Depth PDF

Log-Normal Density Function

Performance Curve - Inlet Control

LN Density Function
Transform Depth PDF to Damage PDF

Expected (Avg) Damage = $62
Challenges to Application

- **Models**
 - Depth-damage functions
 - Identify *ALL* costs
 - Get good estimates (relative? absolute?)
 - Flood frequency curves
- **Data**
 - Basic asset data
 - Size (capacity)
 - Elevations
 - Real construction costs
 - Screen for vulnerable, at-risk assets