Successful Approaches to Change-MaineDOT’s Experience (2015 State of the Bay Presentation)

Charlie Hebson
Maine Department of Transportation

Follow this and additional works at: https://digitalcommons.usm.maine.edu/cbep-presentations

Recommended Citation

This Book is brought to you for free and open access by the Casco Bay Estuary Partnership (CBEP) at USM Digital Commons. It has been accepted for inclusion in Presentations by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
Successful Approaches to Change: MaineDOT’s Experience

Charles Hebson
MaineDOT / Environmental Office
16 State House Station
Augusta ME 04333-0016

presented at
Our Changing Bay 2015
Casco Bay – State of the Bay Conference
Double Tree – Hilton, South Portland, ME
13 October 2015
As a famous climate scientist once said ...

The future ain’t what it used to be.
Some DOT Challenges
Hydraulic Structures

* Assets:
 * Thousands of bridges (span $S \geq 10$ ft)
 * Thousands of large culverts ($5 \leq S < 10$ ft)
 * Many thousands of cross-culverts ($S < 5$ ft)

* Exposures:
 * Coastal: seal-level rise (SLR)
 * Inland: riverine runoff peak flow events

* Projects:
 * Individual assets
 * Corridor reconstruction

* Design Life of New Structures
 * 100 YRS +
Some Very Simplistic Starting Assumptions

- **Bridges:** they are generally big, climate change not a worry
- **Culverts:** existing structures tend to be undersized by current standard
- **Sea Level Rise:** elevation is the issue, not capacity
- **Inland Peak Flows:** asset capacity is the primary issue
- **Asset Replacement:**
 - Due to poor condition or chronic hydrologoc failure
 - Not according to some *prediction* of future failure
MaineDOT Efforts

- Data & Engineering Methods
 - Cooperative projects with USGS
 - Internal design policy
- Planning, Research & Pilot Studies
 - FHWA sponsorship
 - Catalysis & GEI projects (Sam Merrill & collaborators)
 - Decision Support Tool for Enhanced Early Project Scoping and Program / Project Risk Identification
Major Change to MaineDOT Culvert Design Standard

* Cross Culverts ($S < 5$ ft)
 * Design Flow Q_{50}
 * Allowable Headwater $H_{w}/D \leq 1.5$
 * (former standard for all culverts)

* Large Culverts ($5 \leq S < 10$)
 * Design Flow Q_{100}
 * $Q_{100} 20\% > Q_{50}$
 * Allowable Headwater $H_{w}/D \leq 1$
 * Result: bigger structures

- Complemented by environmental “bankfull sizing” for fish passage.
- Protection against $Q_{100}++$.
- Relatively few culverts on “real streams” sized purely for hydraulic capacity.
Benefits of New Standard

- Enhanced protection of assets
 - Protection against increased flows due to climate change
 - Design for Q_{100} now, get Q_{50} protection 50 – 100 yrs from now
- Most useful, biggest impact on “production work”
 - Smaller structures, routine work – lots of them!
- Improved fish passage
 - Reducing & eliminating undersized culverts
- “We’re doing something!”
- Better than interim standard – strong first step - but not final story
 - Ideally – still need to capture future climate expectations
 - Which change scenario plays out?
 - Uncertainty in predictions within that scenario
 - Address MaineDOT system in some fashion
Total DOT asset base too big for meaningful assessment
- Break it up into digestible portions
- Corridors
- Vulnerable geographic settings
- Leverage local experience and staff knowledge
 - Efficient, effective screening

Risk-Based Design *(vs current Frequency-Based Design)*
- **Goal:** Balance Underdesign against Overdesign in a Rational Manner
- Minimize total expected project cost over asset lifetime

Challenges & Limitations:
- Data
- Models
Corridor Selections

Route 2 - Mercer

Courtesy of Sam Merrill

Route 4 - Berwicks
Courtesy of Sam Merrill
Depth Damage Functions for Each Candidate Structure

<table>
<thead>
<tr>
<th>Elev.</th>
<th>Damage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16’</td>
<td>Extreme</td>
<td>= $E/event</td>
</tr>
<tr>
<td>12-14’</td>
<td>Severe</td>
<td>= $E/event</td>
</tr>
<tr>
<td>11-12’</td>
<td>Serious</td>
<td>= $D/event</td>
</tr>
<tr>
<td>8-11’</td>
<td>Moderate</td>
<td>= $C/event</td>
</tr>
<tr>
<td>7-8’</td>
<td>Slight</td>
<td>= $B/event</td>
</tr>
<tr>
<td>0-7’</td>
<td>Negligible</td>
<td>= $A/event</td>
</tr>
</tbody>
</table>

Depth-Damage Function

- **Negligible** = $A/event
- **Slight** = $B/event
- **Moderate** = $C/event
- **Serious** = $D/event
- **Extreme** = $E/event

Elev. Stage: $D = 7’$

Waterway

Base Elevation

Courtesy of Sam Merrill
Transformation of Hydrologic Probabilities to Damage Probabilities

![Log-Normal Probability Plot](image)
Sort of like the Cumulative Distribution Fn – CDF “showroom product”

Probability Density Fn – PDF “under the hood”

Alternative Representations of the Same Underlying Probability Function
Culvert Performance Curve
Flow – Depth Function

For D = 7’
Transform the Flow PDF to a Depth PDF
Expected (Avg) Damage = $62
Challenges to Application

* Models
 * Depth-damage functions
 * Identify **ALL** costs
 * Get good estimates (relative? absolute?)
 * Flood frequency curves
* Data
 * Basic asset data
 * Size (capacity)
 * Elevations
 * Real construction costs
 * Screen for vulnerable, at-risk assets