Synthesis and Analysis of 6-acetyl-1,2,3,4-tetrahydropyridine, a Major Contributor to ‘Mousy’ Off-Flavor in Sour and Wild Beers

Liesel Krout
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/thinking_matters

Part of the Chemistry Commons

Recommended Citation

This Poster Session is brought to you for free and open access by the Student Scholarship at USM Digital Commons. It has been accepted for inclusion in Thinking Matters Symposium by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
Synthesis and analysis of 6-acetyl-1,2,3,4-tetrahydropyridine, a major contributor to ‘mousy’ off-flavor in sour and wild beers

Liesel Krout¹, Lucille Benedict¹, Meg Hausman¹, Zach Bodah²
¹Department of Chemistry, Quality Control Collaboratory, University of Southern Maine, Portland Maine
²Allagash Brewing Company, Portland Maine

Introduction
Unexpected tastes can negatively impact consumer experience in the beer industry. One such taste, a ‘mousy’ off-flavor, is diminishing the quality of sour and wild beers throughout the brewing community.

The unpleasant flavor is a result of the combined presence of three organic compounds, one of which is 6-acetyl-1,2,3,4-tetrahydropyridine (ATHP). Because of its unpredictable nature, brewers must wait for the compound to disappear before distribution, costing them valuable time and revenue. Previous research on these compounds was primarily focused on their presence in red wine but lacked analogous study in beer. The factors responsible for formation, reasons for persistence, and degradation timelines of the compounds were unknown.

This project attempts to synthesize and extract ATHP, the greatest contributor to the ‘mousy’ flavor.

Ultimate Goals
1. Perfect a method for synthesis of ATHP in order to obtain high yields of pure ATHP. This will allow for more precise and accurate quantification methods that are essential for kinetic experiments and compound analysis.
2. Understand the degradation pathways and kinetics of ATHP, and use that knowledge to encourage faster degradation on a large scale, at breweries.
3. Conduct analogous research on ETHP and APY and determine reasons for their formation to prevent their presence from occurring at all in the first place.

Acknowledgements
This project was funded in part by Allagash Brewing Company and Maine Economic Improvement Fund.

Sources

Methods

Synthesis Methods

Method 1 - Low Yield of Impure ATHP

4:2:2 mix of sodium bisulfite, l-proline, dihydroxyacetone ground into fine powder

Bake at 94°C for 30 min until orange and foamy

Baasified, and extracted with diethyl ether

Extraction Method

Synthesize ATHP with the first two steps mentioned above

Add to centrifuge tube:
- 5.0 mL of spiked beer
- Internal standard (4-acetylpyridine) of desired amount
- 3.0 M NaOH dropwise to desired pH

Centrifuge at 1000 rcf, for 5 min intervals until layers separate

Add 10.0 mL iso-octane, then shake 20 min

Dry 2.0 mL of organic layer over anhydrous Na2SO4

Identification via GC-MS

Figure 1a - The GC-MS data at left results from highly basic (pH > 14) extraction with iso-octane.

Figure 1b - This MS data is from the peak at 21.25 min (deprotonated amine form of ATHP)

Figure 1c - This MS data is from the peak above at 17.91 min (protonated amine form of ATHP)

Results
- Synthesis with the method described above results in <0.1% yields.
- Extraction of ATHP was qualitatively successful in beer spiked with ATHP. Refer to Figure 1a at left.
- The internal standard, 4-acetylpyridine, exhibits a downward trend in peak area (in GC data) as the pH of the extracted solution is increased.
- As the pH of the solution (prior to extraction) was increased, the ability to detect both forms of ATHP increased. There was no detectable peak below a pH of 12.0

Figure 2 - Proposed reaction for next synthesis attempt.