Fatigue in Polymers

Benjamin Gomes
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/thinking_matters

Recommended Citation
https://digitalcommons.usm.maine.edu/thinking_matters/151

This Poster Session is brought to you for free and open access by the Student Scholarship at USM Digital Commons. It has been accepted for inclusion in Thinking Matters Symposium Archive by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
Abstract

This project involved the design and construction of a machine that would apply fatigue to a polymer sample. Fatigue is the result of a material being subjected to repeated loading and unloading, or cyclic stress. By building a machine that can apply cyclic stress to a polymer sample, a fatigue limit can be found. Knowing this fatigue limit, a better understanding of the strength of the material can be gained. At low frequencies, polymer fatigue failure becomes less related to test frequency but more related to the initial cracks and their resulting propagation through the sample. The resulting internal stresses and crack can be observed and studied using a polariscope and underwater acoustic apparatus. With this machine, a better understanding can be gained about different types of polymers and their respective strengths.

Objective

A. Use a Polariscope to see initial internal stresses (see Figure 1.)
B. Use Ultrasound to collect initial internal data (time and Amplitude)
C. Use Ultrasound to collect initial external data (time and Amplitude)

1. Fatigue samples a set amount of times (see Figure 3.)
2. Use a Polariscope to see if any new internal stresses have developed
3. Use Ultrasound to see if internal data has changed (time and Amplitude)
4. Use Ultrasound to see if external data has changed (time and Amplitude)

• Repeat steps 1-4 an additional set amount of times

Introduction

Little research has been performed in the study of fatigue in polymers. Because of this, not a lot is known about fatigue life or the affects of initial surface or internal stresses. The first step to learn more about polymers led to the design and construction of a fatigue machine as seen in Figure 3. The second step was to examine the samples using two methods. This examination would be performed once before being fatigued and again after being fatigued. This could then be compared to see if it lead to a better understanding of how initial stresses were affecting how a material fatigued.

Methods

- **Polariscope** - an optical inspection device used to detect internal stresses in materials such as polymers. A polariscope is composed primarily of a light source and two crossed polarized lenses.
- **Ultrasound** – a technique that can be used for studying materials to find imperfections on the surface and within the material. This device is primarily composed of a transducers connected to an oscilloscope.
- **Cyclic Fatigue** – a force applied and then removed and performed repeatedly, on a sample. At low frequencies, this method of testing materials can expose initial stresses on and in the sample. The device is primarily composed of a forcing arm imposing a four point load onto a sample.

Results & Discussion

In this study, three samples were tested. These three samples were labelled A, B, and C and varied in thickness. An initial examination was performed using a Polariscope as seen in Figure 1. As can be seen by the color variation along the edges of sample C, there was some initial internal stresses probably as a result of cutting the samples.

The second method used to examine the internal and also the external stresses was by means of an ultrasound device. This device was first used with a transducer and receiver to study the internal properties. Secondly, the transducer was used by itself to study the surface of the samples.

After gathering initial data, fatigue could be applied to the samples as can be seen in Figure 3. After performing a set number of cycles, the samples were reexamined using the above stated methods to see if any changes had occurred. This was repeated several times until a noticeable distinction in the material could be seen. (at the time that this study was submitted, no conclusions had been realized)

Acknowledgements

A big thank you goes out to Dr. Smith and Dr. Lin for all their help over the past year working on this project and also, for helping me through my academic career. Also a big thanks to Chad Seeley for always helping out in the shop. Lastly I would like to thank Riley Lucier, Austin Verrill, and Mike Currier for always being willing and helpful friends along with being good classmates class mates (thanks girl!)

Figure 1. Polariscope – optical inspection device

Figure 2. Ultrasound – sound waves emitted from a transducer

Figure 3. Fatigue Testing – loading and unloading