Innate food preference in the larval tobacco hornworm, Manduca sexta

Michael Morrison

University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/thinking_matters

Part of the Biology Commons

Recommended Citation
Morrison, Michael, "Innate food preference in the larval tobacco hornworm, Manduca sexta" (2017). Thinking Matters Symposium Archive. 71.
https://digitalcommons.usm.maine.edu/thinking_matters/71

This Poster Session is brought to you for free and open access by the Student Scholarship at USM Digital Commons. It has been accepted for inclusion in Thinking Matters Symposium Archive by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
Abstract
Food preference can drive an organism to seek a specific food source even if another food, which can provide needed nutrition, is easier to obtain. Food preference can develop in different ways, including innate preference, i.e., organisms display food preference at birth, or learned preference, i.e., organisms develop food preference after previous experience with that food. The tobacco hornworm, Manduca sexta, shows learned preference; however, we lack information about innate food preference in Manduca. Manduca sexta larvae eat many different foods until they feed on a solanaceous plant, when they become more specific in their diet. This study focused on naive Manduca sexta larvae to determine if they show innate food preferences. Because early juveniles seek out solanaceous plants if they hatch on a different family of plants, I predicted that Manduca sexta prefer solanaceous plants over artificial food designed for captive animals. Based on trends seen in other studies, I also predicted that Manduca prefer plants that have not been fed upon previously.

To test my predictions, Manduca sexta were allowed to choose from live plants with damaged leaves (to simulate previous feeding by other insects), live plants with undamaged leaves, or lab food. I recorded which food source Manduca approached first and latency to select food. I found that there is no significant difference between latency time, or between the plant and lab food trials. There was a significant difference between the damaged and undamaged plant. I recorded which food source Manduca approached first and latency to select food. I found that there is no significant difference between latency time, or between the plant and lab food trials. There was a significant difference between the damaged and undamaged plant.

Methods
This study utilized 11 naive Manduca sexta larvae, which are larvae that have not had the opportunity to feed on a host plant.

Predictions
1. Manduca prefer live plants over the lab food source. Based on the fact that newly hatched Manduca larva will actively seek out a more suitable host plant after hatching on a less suitable host plant (Nyström, E. (2013)).

2. Manduca prefer the undamaged plants over the damaged ones. Based on the odors given off by damaged Solanaceae plants, that can signal predators of the feeding herbivore, and the Manduca reliance on olfactory senses in food selection (Kessler and Baldwin (2001), Nyström, E. (2013)).

Introduction
Food preference can develop in different ways. One of these ways being learned food preference, which is developing an affinity for a food after having experienced a food (Nyström, E. (2013)). Another way is innate preference, which is an inheritable genetic preference for one food over another based on genetically imprinted nutritional needs (Singer, et al., (1992)).

Nyström, E. (2013) states that larvae Manduca sexta prefer to feed on host plant they have already fed on (de Boer, G., (1992), Jermy, T., Hanson, F. E., & Dethier, V. G. (1986)). Which have shown that larval Manduca sexta prefer to feed on host plant they have already fed on (de Boer, G., (1992), Jermy, T., Hanson, F. E., & Dethier, V. G. (1986)). Another way is innate preference, which is an inheritable genetic preference for one food over another based on genetically imprinted nutritional needs (Singer, et al., (1992)).

Nyström, E. (2013). Feeding Preferences and Foraging in Larvae of Manduca sexta (2013). Another way is innate preference, which is an inheritable genetic preference for one food over another based on genetically imprinted nutritional needs (Singer, et al., (1992)).

Objective
This study analyzed the food preferences of naive Manduca sexta larvae, which are larvae that have not had the opportunity to feed on a host plant.

The setup of the testing apparatus was placed on the center line of the middle of the food choices. A choice was made when the larva crossed the black line of the food side. The setup of the testing apparatus was placed on the center line of the middle of the food choices. A choice was made when the larva crossed the black line of the food side.

Discussion
From the data we can see that there is no significant difference in preference between the undamaged plant, and the lab food, with the probability being more than 0.05. This is also true for the comparison between the damaged plant and the lab food, where again there is no statistical difference, p>0.05. There is also no significant differences in the latency times. From this we can conclude that there is no preference for any of these different food choices. Because of this outcome, I can conclude that we can say that there is no preference for a tomato plant that the Manduca has not been exposed to. These results could be do to several different factors the most important of which is the life stage to the Manduca used in the experiment. The 9 instar larvae were in the 4th instar, and were in the 2nd instar, which are both late in the larval cycle. It has been observed that food preference is induced in the first instar, and that the larvae reared on an artificial medium remain polyphagous (yamamoto (1979)). This could explain why they showed no preference, because they were past the life stage where they would have been the most attracted to the novel food source, and showed no preference because each of the foods, which are roughly equal in nutritional value, would have been equally attractive. It is also very likely that these results are due to experimental error, and a small sample size. The testing area may not be well suited for the experiment and a different apparatus, which features air pumbs, such as the one featured in the Nyström paper, would force the olfactory stimuli to the larva, and may allow it to better choose between the two options. Also the small sample size and the fact that they all came from the same source may lead to skewed results.

The Undamaged plant VS. Damaged plant trial did give a significant result, where the undamaged plant was chosen a significant number of times more than the damaged plant, p<0.05. This is most likely due to the fact that Manduca rely on chemoreceptors to make food choices (De Boer (1993)), and that plants in the same family as tomatoes have been shown to release pheromones, and other volatiles when being fed upon (Kessler and baldwin (2001)). These signals being given off by the plant may drive away the larva, and the pheromones used to attract predators of the larva may also make it less likely to chose the damaged plant. The avoidance of these plants may give the larva a survival advantage, where being able to interpret the pheromone signals will allow the larva to avoid possible predators.

Conclusion
1. The prediction is incorrect, there is no preference shown between the lab food and a tomato plant. There is no statistical difference between the different choices. There is also no statistical difference between the latency times which suggests that there is no preference based on the amount of time it takes to chose one. This supports the conclusion that there is no preference for either lab food or a live tomato plant.

2. This prediction was in fact reinforced by the results of the study. There was a clear, and statistical difference between the two choices. There is a preference for the undamaged plant, over the damaged one, while there is not a difference in latency time, there is a significant difference in the number of times the undamaged plant was chosen. It however cannot be concluded why the difference is seen.

Acknowledgements
I would like to thank Dr. Chris Maher, Dr. David Chaplin and the University of Southern Maine Biology Department.

References
1. de Boer, G. (1992). Diet-induced food preference by Manduca sexta larvae: acceptable non-host plants elicit a stronger induction than non-nutritive controls. Entomologia Experimentalis et Applicata, 63, 3-12