Utilization of an Electronic Best Practice Advisory Decreases Brain Computed Tomography in an Academic Emergency Department Setting

Donald Szlosek
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/thinking_matters

Part of the [Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons](https://digitalcommons.usm.maine.edu/analytical_diagnostic_and_therapeutic_techniques_and_equipment), [Neurology Commons](https://digitalcommons.usm.maine.edu/neurology), [Other Medical Specialties Commons](https://digitalcommons.usm.maine.edu/other_medical_specialties), and the [Trauma Commons](https://digitalcommons.usm.maine.edu/truma)

Recommended Citation

https://digitalcommons.usm.maine.edu/thinking_matters/37

This Poster Session is brought to you for free and open access by the Student Scholarship at USM Digital Commons. It has been accepted for inclusion in Thinking Matters Symposium Archive by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
Utilization of an Electronic Best Practice Advisory Decreases Brain Computed Tomography in an Academic Emergency Department Setting

Donald Szlosek, MPH Candidate
Mentor: Tania Strout¹, RN MPH Ph.D & Andrew Coburn, Ph.D²
Maine Medical Center¹; Muskie School of Public Service², University of Southern Maine

Introduction

More than 1.3 million people seek emergency care following a mild traumatic brain injury (MTBI) each year. While most MTBI patients are safely discharged, a small proportion experience serious intracranial processes. The wide availability of computed tomography (CT) has generated a dramatic increase in the number of CTs performed to identify those patients with clinically important traumatic brain injury (ciTBI), generating expense and radiation exposure risks for patients. To address unwarranted variation in practice, we implemented an electronic best practice advisory (eBPA) based upon a validated clinical prediction rule that appears when emergency department (ED) clinicians order CT following MTBI.

The Canadian Head CT Rule (CHCTR)

High Risk (need 1 to scan)
- Failure to reach GCS 15 within 2 hours
- Open or basilar skull fracture
- Vomiting > 1 time
- Age > 65

Moderate Risk (need 1 to scan)
- Amnesia > 30 minutes before injury
- “High risk mechanism” – auto vs pedestrian, MVC ejection, fall > 3 feet / 5 stairs

Results

Decrease in Head CT scan Utilization for MTBI
- Number of scans decreased by 6% relative to the number of patients seen
- 95% CI: 5-8%, χ²=5.6243, df=2, p<0.001 with 1,897 CTs ordered pre-BPA and 2,419 CTs ordered during the post-BPA period.

Increase in identification of ciTBIs
- Proportion of CTs identifying ciTBI increased by 9%
- (95% CI: 8-13%, χ²=, df=2, p<0.03) with 121/1773 and 131/2285 CTs

Loop-hole in eBPA through CHCTR
- During the post-BPA period, one patient (0.1%) with an unusual presentation failed to meet the BPA screening criteria and went on to have a CT positive for a ciTBI.

Conclusion

In this cohort, implementation of an evidence-based BPA decreased the overall number of post-MTBI CTs ordered while increasing the proportion of CTs identifying ciTBI. Use of an electronic BPA is an effective means of decreasing variation in CT ordering while providing evidence-based clinical decision support at the point of care.