2013

Sea Level Rise and Casco Bay’s Wetlands: A Look at Potential Impacts, West Bath Edition

Curtis C. Bohlen PhD
University of Southern Maine, Casco Bay Estuary Partnership

Marla Stelk

Matt Craig
University of Southern Maine, Casco Bay Estuary Partnership

Caitlin Gerber

Follow this and additional works at: https://digitalcommons.usm.maine.edu/cbep-publications

Recommended Citation

This Report is brought to you for free and open access by the Casco Bay Estuary Partnership (CBEP) at USM Digital Commons. It has been accepted for inclusion in Publications by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
Sea Level Rise and Casco Bay’s Wetlands:

A look at Potential Impacts

WEST BATH EDITION
Sea Level Rise and Casco Bay’s Wetlands

A Look at Potential Impacts

• Curtis Bohlen • Marla Stelk • Matthew Craig • Caitlin Gerber

This report is one of a series of ten reports focusing on the following Casco Bay municipalities:

Brunswick Phippsburg
Cape Elizabeth Portland
Falmouth South Portland
Freeport West Bath
Harpstown Yarmouth

Assistance with field work and other data collection provided by Melissa Anson and Melissa Smith.
GIS analysis provided by Lauren Redmond and Caitlin Gerber.

These reports were funded in whole or in part by the Maine Coastal Program under NOAA award no. NA10N054190188 and the US EPA under grant #CE 9614191.
The report does not necessarily reflect the views of the sponsoring agencies, and no official endorsement should be inferred.

Casco Bay Estuary Partnership 2013
Overview

The Intergovernmental Panel on Climate Change (IPCC) released a report in 2007 documenting a rise in average global temperatures, ocean temperatures and sea level rise. The sea level off Maine’s 3,478 miles of coastline, as measured by the Portland, Maine tide gauge, has been rising at a rate of 1.8 ± 0.1mm/yr since 1912. This is markedly similar to the global average sea level rise determined by the IPCC. The most likely impacts of sea level rise in Maine will be inland migration of beaches, dunes and salt marshes over the next century.

Tidal wetlands are economically, environmentally and socially significant resources. They provide flood storage, flood protection, storm surge buffers, erosion control, water quality improvements, and wildlife habitat. Commercial fishing, shellfishing and outdoor recreation also contribute millions of dollars to Maine’s economy and are dependent on healthy wetlands. Coastal communities and those along critical watershed areas will have to plan a comprehensive response to the changes in topography suggested by the projected impacts of sea level rise.

The unique geological make-up of Maine’s coastline is characterized by very different coastal estuarine environments which are a direct result of prehistoric glacial activity. This led geologists such as Joseph T. Kelley, to subdivide Maine’s coastline into four distinct sub-regions approximately corresponding to Casco Bay, Saco Bay, Penobscot Bay, and the northeast region around Cobscook Bay. Consequently, Maine’s tidal wetlands are diverse, and the impacts to, and responses of, those wetlands to sea level rise are likely to be markedly different in each of those four regions.

The Casco Bay Watershed comprises 986 square miles of land, and stretches from the mountains near Bethel to the coastal waters between Small Point in Phippsburg and Dyer Point in Cape Elizabeth. Home to nearly 20 percent of Maine’s population, the watershed contains 44 municipalities, including some of the state’s largest and fastest growing towns. The Casco Bay Estuary Partnership (CBEP), one of 28 National Estuary Programs nationwide, is a collaborative effort of people and organizations interested in protecting and restoring the Bay. Our partnership includes local, state and federal government organizations, non-profits, local businesses, citizens, universities and more.

The Study

CBEP looked at ten of the fourteen municipalities that line Casco Bay to identify potential areas of marsh migration and possible impacts to existing developed areas due to tidal inundation from sea level rise. Figure 1 shows focus areas across the study area.
FIGURE 1

Casco Bay Focus Areas
West Bath, Maine

This report is designed to help municipal staff and decision makers understand risk levels and potential impacts associated with sea level rise, and to provide science-based projections to inform future policy-making responses. The U.S. Environmental Protection Agency (EPA) produced a publication titled *Synthesis Of Adaptation Options For Coastal Areas* in January, 2009 which identifies several planning and management options for coastal communities.

The maps display places where roads, railroads, trails, dams, and other structures cross tidal wetlands. In most cases, these structures alter the way that water is passed from one side of the wetland to the other. When tidal exchange is restricted, even if it is restricted only during astronomical spring tides, long-term impacts to wetlands can develop that reduce ecosystem resiliency to respond to impacts such as sea level rise. Tidal restrictions also increase velocities in the creek channels, creating scour that may undermine structural integrity over time. Under the sea level rise scenarios illustrated in these maps, the impacts of roads and other crossings on wetland resiliency will only increase. At the same time, creek channel dimensions can be expected to grow significantly. As a result, one of the most effective adaptations steps that towns can take to protect existing infrastructure and allow for marsh migration is to increase the size of culverts beneath existing roads. Such sites are attractive opportunities to the habitat restoration funding community, and removal of existing tidal restrictions is a high priority for the Casco Bay Estuary Partnership. If your town is interested in exploring culvert replacement or removal projects and would like technical or grant writing assistance, contact CBEP staff for information on structural options, federal and state contacts, and funding opportunities.

In West Bath, we have identified four primary areas as either being at risk of conflict between rising seas and existing developed areas, and/or including areas where we see potential marsh migration (Figure 2).

These areas are identified as:

1. Back Cove Area
2. Mill Cove Area
3. Lower New Meadows River Area
4. Lower New Meadows ‘Lake’ Area

Two maps were produced for each of the areas above. The maps show existing infrastructure such as roads and dams, as well as existing wetlands (blue), then show how these resources are likely to be impacted by a 1’ and then a 3’ rise in sea level. Projected impacts are displayed as lost wetlands (yellow), and conflicts between existing infrastructure and sea level rise are shown in pink. Projected new wetlands are shown in orange.
As mentioned previously, caution must be taken when interpreting these maps because some of the areas may or may not pose any serious future risk for tidal inundation. Local knowledge of these areas will be necessary to more accurately gauge whether or not they are areas of concern for West Bath according to current or future development plans, comprehensive plans, or conservation plans. Some areas may pose concern with regard to existing or future infrastructure, and other areas may see more significant changes with regard to wetland type and, subsequently, habitat.

Wb1: Back Cove Area

Figures 3 and 4 show projected sea level rise impacts on tidal wetlands and developed areas in the vicinity of Back Cove. The analysis suggests that a significant area of existing tidal wetlands along the shore of Back Cove will be lost as sea level rises, with more extensive losses likely in the 3’ scenario. Elevations in this area are generally not suitable for marsh migration inland, so a net loss of tidal wetland is likely. Rising seas are projected to conflict with some existing developed areas, with impact to roads such as Corgi Lane and Mountain Road.

Wb2: Mill Cove Area

Figures 5 and 6 show projected sea level rise impacts on tidal wetlands and developed areas in the vicinity of Mill Cove. If sea level rises by 1’-3’, little loss or gain of wetland is expected around Mill Cove, with the exception of the Berry’s Mill impoundment. Berry’s Mill Road (43.876288, -69.851525) currently restricts tidal exchange between Mill Cove and the impoundment upstream. Although land elevations around the Berry’s Mill impoundment are suitable for inland marsh migration, and two low-lying areas of Austin Road are projected to be impacted by increased sea level, these impacts will be influenced by the existing tidal restriction at Berry’s Mill Road. Thus the formation of new tidal wetlands in response to sea level rise in this area, and potential impacts to existing infrastructure, are not clear.

Wb3: Lower New Meadows River Area

Figures 7 and 8 show projected sea level rise impacts on tidal wetlands and developed areas in the vicinity of the lower New Meadows River. Elevations in this area are not suitable for tidal wetland migration inland in response to sea level rise. However, some existing developed areas, particularly in the vicinity of Bull Rock Road and Kings Point Road, can be expected, particularly if sea level rises by 3’. The orange area at the bottom right hand side of the map show an area of marsh migration on the upper reaches of Back Cove. This area of marsh expansion, however, does not appear to pose any threat to any existing development or infrastructure. Back Cove can be seen in more detail in Wb1.
Wb4: Lower New Meadows ‘Lake’ Area

Figures 9 and 10 show projected sea level rise impacts on tidal wetlands and developed areas in the vicinity of the lower New Meadows ‘Lake’. The relatively steep and rocky shoreline in this area will limit the ability of tidal wetland to migrate inland in response to sea level rise. Similarly, few direct impacts to existing infrastructure are projected on the West Bath side of the ‘Lake’. However, significant areas of the US Route 1 causeway will be inundated, with unknown impacts to the road banks. Elevations within the Route 1 median are suitable for formation of new tidal wetlands and/or flooding, but it is unclear whether this would occur.
FIGURE 3: Wb1

Back Cove: 1 ft Sea Level Rise

Legend
- Road
- Dam
- Rail
- Both
- Other
- Existing Wetlands
- Lost Wetlands
- New, no conflict
- New, yes conflict
FIGURE 4: Wb1

Back Cove: 3 ft Sea Level Rise
FIGURE 6: Wb2

Mill Cove: 3 ft Sea Level Rise
FIGURE 7: Wb3 Lower New Meadows River: 1 ft Sea Level Rise
FIGURE 8: Wb3
Lower New Meadows River: 3 ft Sea Level Rise
FIGURE 9: Wb4 Lower New Meadows ‘Lake’ Area: 1 ft Sea Level Rise
FIGURE 10: Wb4
Lower New Meadows ‘Lake’ Area: 3 ft Sea Level Rise

Legend
- Road
- Dam
- Rail
- Both
- Other
- Existing Wetlands
- Lost Wetlands
- New, no conflict
- New, yes conflict
Suggested Uses of this Information:

The next logical questions after reviewing your town’s report might be to ask “how do we use this information?” and “what can we do about the predicted effects of sea level rise on our coastal marshes?” As stand-alone information, your town’s maps can provide the basis for starting community discussions on the potential impacts of sea level rise. These maps can be used in conjunction with current planning processes or documents in your town, such as municipal and Shoreland zoning, your comprehensive plan, open space plan, or capital improvement plan, and related ordinances such as your floodplain ordinance, to begin to develop adaptation strategies that would work best in your community in order to preserve and protect what is important to your community and reduce costs resulting from increasing levels and frequency of inundation. The following actions and questions can help your town begin to integrate this information into your community discussions and local decision-making:

- Review the maps to identify those areas where coastal marshes will try to migrate landward;

- Determine if there are obstacles to that happening. If not, who owns those lands? How might they be managed to allow marsh migration to occur in undeveloped areas? Are these areas part of the town’s future investment and development strategies? If there is already development in those places, what stands in the way of marsh migration? Roads or other infrastructure? How vulnerable might that infrastructure be?

- If your town has zoning, how are those areas zoned now? Is that appropriate in light of the predicted effects of sea level rise?

The Maine Coastal Program, Maine Geological Survey and the Municipal Planning Assistance Program, all at the Maine Department of Agriculture, Conservation and Forestry, have been working with regional councils, communities and regions along the Maine coast to address these questions and develop local responses. Because the impacts are unique in each community, responses will be as well. To date, municipal responses that might be transferable to your community have included: changes to freeboard required in the flood plain ordinance; strategic conservation actions to ensure that marshes can migrate; adoption of Highest Annual Tide elevation from the LiDAR data into the Shoreland Zoning Ordinance; identification of tidal restrictions; and addition of sea level rise chapters into comprehensive plans. For more information on these or for help developing other adaptation strategies, contact your regional planning organization (Greater Portland Council of Governments or Midcoast Council of Governments) or the Municipal Planning Assistance Program at the Department of Agriculture, Conservation and Forestry.
References:

Appendix:

Methods:

The study is based on a detailed analysis of high resolution terrestrial elevations derived from “LIDAR” (Light Detection and Ranging) data. LIDAR is a technology similar to RADAR that uses light waves instead of radio waves to measure distance from a plane to the ground. Raw LIDAR data is post-processed to produce a “Digital Elevation Model” (DEM) that shows estimated ground elevations free of buildings, trees, and other obstructions. The resulting DEM can be highly accurate, with elevations estimated every few feet (horizontally), absolute vertical errors typically less than a foot, and relative vertical errors much smaller than that on a local scale.

Two sources of LIDAR data were used in this analysis: (1) FEMA South Coast LIDAR 2006, (2) LIDAR for the Northeast 2011. Both data sets were acquired as DEM tiles from the University of Southern Maine’s Geographic Information Systems Laboratory in the spring of 2011. As received, the two data sets were based on different units of measure (feet vs. meters), so the LIDAR for the Northeast 2011 data set was scaled and resampled using bilinear interpolation before the two data sets were combined to produce a single composite LIDAR DEM for the study area.
LIDAR data was combined with information on tidal heights compiled by NOAA for the Portland tide gauge (station 8418150) in order to identify portions of the shoreline that lie within the upper intertidal zone (between the Mean Tide Level [MTL] and the Highest Annual Tide [HAT]). These elevations are roughly coincident with the lower (MTL) and upper (HAT) limit of tidal wetland development in Maine. Not every location between these elevations will develop tidal wetland. Tidal wetlands only occur where other environmental conditions are also suitable, such as having suitable soils, low slopes, and low to moderate wave exposure. Nevertheless, in areas with existing tidal wetland, the overlap between existing tidal wetland and areas identified solely on the basis of elevation is quite good. Figure 11 shows an overlay of CBEP’s elevation polygons (outlined in red and orange as high and low marsh areas) compared to wetlands identified in the National Wetlands Inventory (light blue), for a tidal wetland in Maine. The accuracy is sufficient for the purpose of this study.

FIGURE 11
It is important to note that the maps we have produced are not maps of flood risk, but maps of the projected upper intertidal zone. The areas highlighted in these maps are, in the absence of efforts to protect them from the ocean, expected to be flooded on a regular basis (ranging from daily to annually) due to the action of the tides. Significantly larger areas may be at risk of inundation or flooding due to storms. Because the maps we have produced to date are based solely on elevation, there may be areas in your community which show up as sitting at the proper elevation for tidal marsh development, but that do not now harbor salt marshes. Typically such areas are beaches, rocky shores, or the base of steep bluffs, so there is little chance for confusion, but the maps need to be read with this in mind.

To predict where the upper intertidal zone (and thus tidal wetlands) may exist in the future, we developed a pair of maps showing elevations suitable for tidal marsh development, one showing a 1’ rise in sea level, and one a 3’ rise in sea level. While these scenarios are hypothetical, they are consistent with climate change and sea level rise modeling efforts. A recent analysis of climate change for the Casco Bay region commissioned by CBEP suggests that an increase in sea level on the order of 1’ is likely by the middle of this century, while increases of 2’ to well over 3’ are possible by 2100 (Table 1).

In general, Casco Bay’s shoreline is characterized by steep rocky slopes, so we are more fortunate than our southern neighbors in that our coastline may not be as affected by tidal inundation. However, where we have mapped upper intertidal zone areas, we do see places where existing development (as determined by 2007 data on impervious surfaces) may be vulnerable to inundation in the future, or may be in conflict with landward migration of tidal wetlands as sea level increases.

TABLE 1:

Estimates of future stillwater elevations at the Portland tide gauge under lower and higher greenhouse gas emissions scenarios (all estimates in feet relative to NAVD 1988; based on CBEP 2010 report).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Lower Emissions</th>
<th>Higher Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2050 2100</td>
<td>2050 2100</td>
</tr>
<tr>
<td>Subsidence</td>
<td>0.024 0.043</td>
<td>0.024 0.043</td>
</tr>
<tr>
<td>Dynamic</td>
<td>NE 0.52</td>
<td>NE 0.79</td>
</tr>
<tr>
<td>Eustatic</td>
<td>0.66 1.6</td>
<td>1.4 4.6</td>
</tr>
<tr>
<td>Total Predicted Stillwater Elevation (ft)</td>
<td>9.5 11.1</td>
<td>10.3 14.3</td>
</tr>
<tr>
<td>Net Change in Sea Level</td>
<td>0.6 2.2</td>
<td>1.4 5.4</td>
</tr>
</tbody>
</table>