A female audience increases frequency of showy agonistic displays in male Siamese fighting fish

Raisa Lück
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/thinking_matters

Part of the Biology Commons, and the Marine Biology Commons

Recommended Citation
Lück, Raisa, "A female audience increases frequency of showy agonistic displays in male Siamese fighting fish" (2014). Thinking Matters Symposium. 15.
https://digitalcommons.usm.maine.edu/thinking_matters/15

This Poster Session is brought to you for free and open access by the Student Scholarship at USM Digital Commons. It has been accepted for inclusion in Thinking Matters Symposium by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
INTRODUCTION

Agonistic displays are displays directly involved in conflict between two or more individuals. Researchers have observed some form of agonistic behavior in fish, birds, mammals, insects, and amphibians (Dzieweczynski et al. 2013). While individuals perform agonistic displays, other individuals nearby may not be involved in displaying, i.e., audiences, and their presence may change display choice because displays serve the presence of these individuals (Matos & McGregor, 2002). Displayers must choose displays that maximize their effectiveness against both the opponent and audience, resulting in a trade-off between defending themselves against the opponent and conveying information to the audience (Matos & McGregor, 2002).

Matos Siamese fighting fish (Betta splendens) have easily identifiable agonistic displays that make them ideal candidates for testing the audience effect in a lab setting (Matos & McGregor, 2002). Male Bettas are notably territorial and display shortly after they encounter another male; if a female were present during these displays, then a male may attempt to court her while still asserting his territorial claim (Matos & McGregor, 2002). My objective was to determine if a female audience changes the type and frequency of displays in males.

METHODS AND MATERIALS

I conducted the study in Room 160 Science at the University of Southern Maine with a total of 8 males and 3 females. I kept males in separate 3.8 l tanks at room temperature where they were visually separated from each other by screens. I tested each focal male with every other male once with a female audience and once without an audience for a total of 14 tests per male.

For my tests, I randomly selected 2 males (control test) or two males and a female (experimental test), and I set their tanks side-by-side. I continuously recorded frequency of focal male displays for 10 min, once males began to display to each other. Displays included tail beats, operculum extensions, fin flares, bites, charges, and retreats. I did not test the same male more than twice in one testing session.

I calculated mean display frequencies for each male during control and experimental tests. I then performed a repeated measures, two-tailed t test to compare mean cumulative frequencies, measured as percent of total displays, of each display type (showy, aggressive, and submissive) to test for the audience effect. I used JMP software with a significance level of P < 0.05.

RESULTS

Males respond to a female audience by increasing the frequency of showy displays and decreasing the frequency of aggressive displays. By increasing showy displays, males may attempt to court the female and display higher energy territorial displays (Matos & McGregor, 2002). Furthermore, males have a limited number of displays to choose from; if they increase one type of display, it inevitably results in a decrease of the other. Males may decrease displays of aggression in the presence of a female to avoid driving her away; females may prefer males that display less aggression, particularly biting, to avoid injury (Doutrelant & McGregor, 2000; Matos & McGregor, 2002). Submissive displays remained unchanged across treatments, most likely because any acts of submission would be unfavorable during courting and territory defense (Dzieweczynski et al. 2012; Matos & McGregor, 2002).

My results are similar to other studies observing male Betta displays and the audience effect (Matos & McGregor, 2001). Tail beating indicates male stamina, and females use tail beating to assess a male’s overall condition (Matos & McGregor, 2002). By increasing showy displays such as tail beating that require high inputs of energy, males may increase their reproductive success in the wild, where they are likely to encounter a female audience (Matos & McGregor, 2002). However, using high energy displays and giving more attention to the audience than the opponent leaves displaying males at a disadvantage against opponents, and they may be less effective at defending their territory (Matos & McGregor, 2002).

Even though display frequencies changed markedly in the presence of a female audience, nearly 50% of all displays were aggressive. Operculum extensions, classified as an aggressive display in this experiment, also can be considered a showy display because males flare the operculum at females as well as males (Matos & McGregor, 2002). By not differentiating which fish was the recipient of each operculum extension, I was unable to include operculum extensions as a showy display. Further research paying careful attention to operculum extensions in males would be beneficial, in which operculum extensions directed at females were separated from those directed at males.

My results support the prevalence of the audience effect on displaying male Bettas. Males are aware of audiences and respond accordingly by choosing displays that allow them to interact with both the opponent and audience.