Rural HIV Prevalence and Service Availability in the United States: A Chartbook

Katherine Ahrens PhD
University of Southern Maine, Muskie School of Public Service

Amanda Burgess MPPM
University of Southern Maine, Muskie School of Public Service, Maine Rural Health Research Center

Louisa Munk
University of Southern Maine, Muskie School of Public Service, Maine Rural Health Research Center

Erika Ziller PhD
University of Southern Maine, Muskie School of Public Service, Maine Rural Health Research Center

Follow this and additional works at: https://digitalcommons.usm.maine.edu/population_health

Part of the Health Policy Commons, and the Health Services Research Commons

Recommended Citation

This Chartbook is brought to you for free and open access by the Maine Rural Health Research Center (MRHRC) at USM Digital Commons. It has been accepted for inclusion in Population Health by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.
Rural HIV Prevalence and Service Availability in the United States

A CHARTBOOK

February 2021
Rural HIV Prevalence and Service Availability in the United States

A Chartbook

February 2021

Maine Rural Health Research Center
Muskie School of Public Service
University of Southern Maine

Funding Acknowledgement:
This study was funded by a cooperative agreement between the US Federal Office of Rural Health Policy, Health Resources and Services Administration, Department of Health and Human Services (CA#U1CRH03716) and the University of Southern Maine. The findings and conclusions expressed in this report are those of the authors and do not necessarily represent the official position of the US Federal Office of Rural Health Policy.
Table of Contents

SECTION 1: HIV Prevalence 2016

1.1 State-Level HIV Prevalence
- Figure 1: Map of HIV Prevalence, by State
 - Jurisdictions with the Highest HIV Prevalence
 - Jurisdictions with the Lowest HIV Prevalence
- Figure 2: HIV Prevalence, by Census Region

1.2 County-Level HIV Prevalence

Data Availability
- Figure 3: Percentage of Counties with Suppressed HIV Prevalence Data in AtlasPlus, by Rurality
- Figure 4: Percentage of Counties with Suppressed HIV Prevalence Data in AtlasPlus, by Rurality and Census Region

Estimated HIV Prevalence by County
- Figure 5: HIV Prevalence, by Rurality
- Figure 6: Map of HIV Prevalence, by Rurality
- Figure 7: State Rank of HIV Prevalence, by Rurality

SECTION 2: HIV Services 2019

2.1 Availability of HIV-Related Services in the National Prevention Information Network Database

HIV-Related Service Availability
- Figure 8: Percentage of Counties with One or More HIV-Related Service Available, by Rurality
- Figure 9: Percentage of Counties with One or More HIV-Related Service Available, by Rurality and Census Region
- Figure 10: Map of Counties with One or More HIV-Related Service Available

HIV Service Availability
- Figure 11: Percentage of Counties with One or More HIV Service Available, by Rurality
- Figure 12: Percentage of Counties with One or More HIV Service Available, by Rurality and Census Region
- Figure 13: Map of Counties with One or More HIV Service Available

HIV Testing Services
- Figure 14: Percentage of Counties with HIV Testing Service Availability, by Rurality
- Figure 15: Percentage of Counties with HIV Testing Service Availability, by Rurality and Census Region
- Figure 16: Map of Availability of HIV Testing Services

HIV Rapid Testing Services
- Figure 17: Percentage of Counties with HIV Rapid Testing Service Availability, by Rurality
- Figure 18: Percentage of Counties with HIV Rapid Testing Service Availability, by Rurality and Census Region
- Figure 19: Map of Availability of Rapid Testing Services

HIV Prevention Education
- Figure 20: Percentage of Counties with HIV Prevention Education Available, by Rurality
- Figure 21: Percentage of Counties with HIV Prevention Education Available, by Rurality and Census Region
- Figure 22: Map of Availability of HIV Prevention Education

PrEP Service Availability
- Figure 23: Percentage of Counties with PrEP Services Available, by Rurality
- Figure 24: Percentage of Counties with PrEP Services Available, by Rurality and Census Region
- Figure 25: Map of PrEP Service Availability
SECTION 2: HIV Services 2019 (continued)

2.1 Availability of HIV-Related Services in The National Prevention Information Network Database

HIV/AIDS Medical Treatment Service Availability

- Figure 26: Percentage of Counties with HIV/AIDS Medical Treatment Service Available, by Rurality
- Figure 27: Percentage of Counties with HIV/AIDS Medical Treatment Service Available, by Rurality and Census Region
- Figure 28: Map of HIV/AIDS Medical Treatment Service Availability

SECTION 3: Conclusion

Conclusion

SECTION 4: Technical Notes

4.1 HIV Prevalence 2016

HIV Prevalence Technical Notes

4.2 HIV Services 2019

HIV Services Technical Notes

Endnotes

Appendix A

Prepared by

Katherine Ahrens, PhD
Amanda Burgess, MPPM
Louisa Munk, MPH
Erika Ziller, PhD

of the

Maine Rural Health Research Center
Muskie School of Public Service
University of Southern Maine
Introduction

The Centers for Disease Control and Prevention (CDC) estimates that at the end of 2016, 1.14 million people in the United States were living with HIV, including an estimated 162,500 individuals who were not yet diagnosed. HIV prevention, diagnosis, and treatment are a national public health priority. In 2019, the US Department of Health and Human Services launched Ending the HIV Epidemic: A Plan for America, a cross-agency initiative to leverage scientific advances in HIV prevention, diagnosis, treatment, and outbreak response. The initiative aims to decrease HIV infections in the United States by 75 percent by 2025 and 90 percent by 2030. The first phase of the initiative focuses on areas of the United States that are most impacted by HIV, including 48 counties, Washington DC, San Juan, Puerto Rico; and seven states the CDC has identified as having a substantial rural HIV burden (Alabama, Arkansas, Kentucky, Mississippi, Missouri, Oklahoma, and South Carolina).

This chart book provides an update to the South Carolina Rural Health Research Center’s 2013 report HIV/AIDS in Rural America: Prevalence and Service Availability, which examined rural-urban HIV prevalence in 2008 and availability of Ryan White medical providers. The research found that HIV prevalence for rural counties was highest in southern states, but within these states, rates were higher in urban counties than rural. The report also found lower availability of Ryan White providers in rural compared with urban counties.

Urban-Rural Classification Scheme for Counties:

County-level rurality was defined using the National Center for Health Statistics (NCHS) 2013 Urban-Rural Classification Scheme for Counties, which categorizes counties into six mutually exclusive groups: large central metro (U1), large fringe metro (U2), medium metro (U3), small metro (U4), micropolitan (R1), and noncore (R2).

This chart book examines 2016 HIV prevalence and the availability of HIV prevention, testing, and treatment services across the rural-urban continuum and by US Census region. Publicly available county-level HIV prevalence data from the CDC and state-produced HIV surveillance reports were used to estimate HIV prevalence across the rural-urban continuum. HIV prevalence data include all diagnoses of HIV infection, with or without a stage 3 (AIDS) diagnosis. Geocoded data on organizations that provide prevention, testing, and treatment services related to HIV were obtained from the National Prevention Information Network (NPIN).

The primary research questions investigated in this chartbook are:

1. What is the prevalence of HIV by rurality of county and US Census region?
2. What is the availability of HIV prevention, testing, and treatment services by rurality of county and US Census region?
Data on state-level HIV prevalence in 2016 from the CDC’s AtlasPlus database show variation across US states and Census regions. HIV prevalence ranges from 60 per 100,000 population in North Dakota to 2,434 per 100,000 population in Washington, DC. Four of the five jurisdictions with the highest HIV prevalence in 2016 are located in the southern Census region. Across the US Census regions, HIV prevalence is highest in the Northeast (458 per 100,000 population) and lowest in the Midwest (205 per 100,000 population).
Methods
We used data from the CDC’s AtlasPlus database to estimate HIV prevalence by county and county-level rurality. For counties with suppressed or incomplete AtlasPlus HIV prevalence data, we used state HIV surveillance reports to fill in missing county-level data. See technical notes and the Appendix for additional information.

Data Availability
County-level HIV prevalence data were suppressed in AtlasPlus for 593 counties across 37 states (20 percent of counties in the US) in 2016, in accordance with data sharing agreements. In many cases, data were suppressed because there were fewer than five identified persons living with HIV in the county. Compared with urban counties, a greater proportion of rural counties had HIV data suppressed (26 percent of rural counties compared with 6 percent of urban counties). Across the US Census regions, the West and Midwest had the largest proportion of counties with suppressed HIV prevalence data in AtlasPlus.

Figure 3: Percentage of Counties with Suppressed HIV Prevalence Data in AtlasPlus, by Rurality

Figure 4: Percentage of Counties with Suppressed HIV Prevalence Data in AtlasPlus, by Census Region
Estimated HIV Prevalence, by County

HIV prevalence was higher among urban counties (399 per 100,000) than rural counties (149 per 100,000), with prevalence decreasing with increasing rurality. Rural and urban counties in the top tertile of HIV prevalence (above 173 per 100,000) were primarily located in the South.
The five states with the highest rural HIV prevalence were located in the South (Florida, South Carolina, Georgia, Louisiana, and Mississippi). Urban HIV prevalence was higher than rural county-level HIV prevalence in all but two states (South Carolina and Hawaii).

Figure excludes Washington, DC, which was classified as an urban area and had an HIV prevalence of 2,445 per 100,000 population.
HIV-Related Service Availability

The 16 HIV-related services included in this analysis were: conventional blood HIV testing, rapid blood HIV testing, conventional oral HIV testing, rapid oral HIV testing; testing services for chlamydia, gonorrhea, syphilis, herpes, and HCV; HIV prevention education, hepatitis prevention education, Pre-Exposure Prophylaxis (PrEP), Post-Exposure Prophylaxis (PEP), PrEP navigation and support services, HIV medical treatment, and hepatitis C virus (HCV) treatment and care. Counties were categorized as having one or more HIV-related service available if any of the 16 services were offered in that county by an organization listed in the National Prevention Information Network Database.

KEY TAKEAWAYS:

- Compared with urban counties, a smaller proportion of rural counties had organizations in the county that provided one or more HIV-related service.
- Compared with urban counties in the same Census region, a smaller proportion of rural counties in the Midwest, South, and West had organizations in the county that provided one or more HIV-related service.
HIV Service Availability

The nine HIV services included in this analysis were: HIV/AIDS prevention education, Pre-Exposure Prophylaxis (PrEP), Post-Exposure Prophylaxis (PEP), HIV/AIDS medical services, PrEP navigation, conventional blood HIV testing, conventional oral HIV testing, rapid blood HIV testing, and rapid oral HIV testing. Counties were categorized as having one or more HIV service available if any of the nine services were offered in that county by an organization listed in the National Prevention Information Network Database.

Figure 11: Percentage of Counties with One or More HIV Service Available, by Rurality

Figure 12: Percentage of Counties with One or More HIV Service Available, by Rurality and Census Region

KEY TAKEAWAYS:

- Compared with urban counties, a smaller proportion of rural counties had organizations in the county that provided one or more HIV service.
- Compared with urban counties in the same Census region, a smaller proportion of rural counties in the Midwest, South, and West had organizations in the county that provided one or more HIV service.
HIV Testing Services

The CDC and the US Preventive Services Task Force recommend screening adolescents, adults, and all pregnant women for HIV.5,6 HIV testing services include conventional blood testing, conventional oral testing, rapid blood testing, and rapid oral testing.

KEY TAKEAWAYS:

- Compared with urban counties, a smaller proportion of rural counties had organizations that provided HIV testing services.
- Compared with urban counties in that Census region, a smaller proportion of rural counties had an organization that provided HIV testing services in the Midwest, South, and West.

![Map of Availability of HIV Testing Services](image)
HIV Rapid Testing Services

Rapid tests have a quicker run time than conventional HIV tests, can be processed outside a laboratory, and allow individuals to receive test results at the point of care. Rapid tests using a fingerstick or oral fluid may be used in nonclinical community settings that are not equipped to conduct venipuncture.

Figure 17: Percentage of Counties with HIV Rapid Testing Service Availability, by Rurality

Figure 18: Percentage of Counties with HIV Rapid Testing Service Availability, by Rurality and Census Region

KEY TAKEAWAYS:
- Across all Census regions and rural classifications, a smaller proportion of rural counties had an organization that provided HIV rapid testing services compared with urban counties.

Figure 19: Map of Availability of Rapid Testing Services
HIV/AIDS prevention education aims to reduce HIV transmission by educating individuals on actions they can take to protect themselves, how to engage in less risky behaviors, how to use risk reduction tools, and how to access HIV preventive services in health care settings.

KEY TAKEAWAYS:
- Compared with urban counties, a smaller proportion of rural counties had an organization that provided HIV prevention education.
- Compared with urban counties in the same Census region, a smaller proportion of rural counties in the Midwest, South, and West had an organization providing HIV prevention education.
PrEP Service Availability

Pre-Exposure Prophylaxis (PrEP) is the use of daily medication to lower the chance of HIV infection. The CDC and the US Preventive Services Task Force recommend providing PrEP to individuals who are not infected with HIV and are at high risk of acquiring HIV from sex or injection drug use.9,10

KEY TAKEAWAYS:

- Compared with urban counties, a smaller proportion of rural counties had an organization in that county that provided PrEP services.
- Compared with urban counties in that Census region, a smaller proportion of rural counties had an organization that provided PrEP services.
HIV/AIDS Medical Treatment Service Availability

HIV/AIDS medical treatment is the provision of clinical services to patients diagnosed with HIV. The services are designed to reduce the level of HIV in the body, keep the immune system as healthy as possible, and decrease complications that may develop.

KEY TAKEAWAYS:
- HIV/AIDS medical treatment services were available in a smaller proportion of rural counties compared with urban counties.
- In each Census region, a smaller proportion of rural counties had an organization providing HIV/AIDS medical services compared with urban counties.
Conclusion

The figures in this chartbook show geographic differences in HIV prevalence and the availability of HIV-related services across the rural-urban continuum and Census regions in the United States. HIV prevalence is higher in urban counties than rural counties (399 per 100,000 compared with 149 per 100,000, respectively), with prevalence decreasing with increasing level of rurality. HIV prevalence in urban counties is higher than HIV prevalence in rural counties in all but two states (South Carolina and Hawaii). The Northeast has the highest HIV prevalence (485 per 100,000) followed by the South (429 per 100,000), West (302 per 100,000), and Midwest (205 per 100,000).

Analyses of the availability of HIV-related services show that compared with urban counties, a smaller proportion of rural counties have organizations that provided HIV prevention, testing, and treatment services. For example, organizations that provide HIV testing services are located in 88 percent of urban counties compared with 69 percent of rural counties, and rapid HIV testing services are available in 58 percent of urban counties compared with 26 percent of rural counties. In the Midwest, Southern, and Western Census regions, the availability of HIV-related services in rural counties was lower for each service examined compared with urban counties in the same Census region. In the Northeast, however, rural-urban differences in the availability of services were not found for HIV prevention education, HIV testing, HIV services, and HIV-related services. These analyses of HIV service availability align with three pillars of the Ending the HIV Epidemic initiative: prevention, diagnosis, and treatment. These findings may inform the scale up of HIV-related public health efforts in the seven rural states identified by the initiative as having a substantial rural HIV burden as well as rural counties identified in this study as falling into the upper tertile of HIV prevalence rates. Limited availability of testing, education, and PEP/PrEP in some rural areas of the country may challenge efforts to end the HIV epidemic.

One limitation of the HIV/AIDS in Rural America report on which this study is based is the lack of county-level HIV prevalence data for 2008 for 22 states. A contribution of the present analysis is the estimation of HIV case counts and prevalence rates for every county in the country. Both this study and HIV/AIDS in Rural America found that HIV prevalence declined with rurality. However, the findings presented in this chart book differ from those of the HIV/AIDS in Rural America in several ways. While the analysis of 2008 data found that the South had the highest overall HIV prevalence rate, the present analysis of 2016 data found that the Northeast has the highest HIV prevalence rate. HIV/AIDS in Rural America identified South Carolina, Mississippi, and Louisiana as the states with the highest rural HIV prevalence in 2008. The present analysis identified Florida, South Carolina, and Georgia as the states with the highest rural HIV prevalence in 2016. Differences in the findings of the two reports may be due to the differences in data availability and/or changes in HIV prevalence between 2008 and 2016.

The present analysis and HIV/AIDS in Rural America used different data sources to assess the availability of HIV-related services. While the South Carolina Rural Health Research Center examined the presence of Ryan White medical providers, the current analysis used data from the NPRN to examine the presence of organizations that provide HIV-related services, regardless of participation in the Ryan White Program. Both studies found that a smaller proportion of rural counties have HIV-related services located in the county.

The present analysis and HIV/AIDS in Rural America use different data sources to assess the availability of HIV-related services. While the South Carolina Rural Health Research Center examined the presence of Ryan White medical providers, the current analysis used data from the NPRN to examine the presence of organizations that provide HIV-related services, regardless of participation in the Ryan White Program. Both studies found that a smaller proportion of rural counties have HIV-related services located in the county. A limitation of the analyses presented in this chartbook is the use of counties as the unit of analysis, which may mask heterogeneity of HIV prevalence and access to services within counties.

Studies of HIV prevalence often neglect to analyze and present data by rurality. The findings of this study may help inform policies that augment rural HIV prevention, diagnosis, treatment, and outbreak response efforts.
The primary source of data for 2016 HIV prevalence estimates was the CDC’s online AtlasPlus database, which includes surveillance data for HIV, viral hepatitis, tuberculosis, and sexually transmitted diseases. The HIV prevalence data in AtlasPlus are from the National HIV Surveillance System, which aggregates data from all 50 states, the District of Columbia, and six US dependent areas. The AtlasPlus data used in the present analyses include all persons aged 13 and older living with diagnosed HIV or AIDS at the end of 2016. In order to ensure accurate HIV case counts and prevalence rates, the CDC accounts for deaths among persons living with HIV by linking the state-provided HIV surveillance data to the National Death Index. The CDC also de-duplicates data for individuals living with HIV who are reported by multiple states based on their most recent known address as of December 31, 2016.

AtlasPlus HIV prevalence data have several limitations. Data do not include individuals with HIV who have not been tested or those who have received anonymous testing services. The Atlas data also represent minimum HIV prevalence estimates due to incomplete information on a person’s clinical, vital, and residence status, which varies across states. CDC estimates that completeness of HIV reporting is at more than 80 percent. Additionally, the CDC suppresses county-level data from the online AtlasPlus database if the population denominator is less than 100, if total case counts are between one and four, or if suppression is required per agreements between the CDC and state/local HIV surveillance programs.

We accessed HIV prevalence data from AtlasPlus on December 11, 2019. For 14 states, AtlasPlus had county-level prevalence estimates for every county in the state (Alabama, Arizona, Connecticut, Delaware, Washington DC, Florida, Massachusetts, Maryland, Maine, New Hampshire, New Jersey, Rhode Island, South Carolina, and Vermont). In the remaining 36 states and the District of Columbia, the CDC suppressed county-level data with varying frequency across states (see Appendix A). In total, data were suppressed for 593 counties (19.9 percent of counties in the US).

In order to fill in missing county-level HIV case counts and prevalence rates, and to account for incomplete reporting in the AtlasPlus database, we searched each state’s health department website for 2016 HIV surveillance reports that included information on sub-state level case counts and/or prevalence rates. Our goal was to obtain county-level estimates for each state that summed to within +/-10% of the total AtlasPlus HIV case counts for that state in 2016. We selected the AtlasPlus HIV case counts for each state as the comparison because these cases have been de-duplicated and do not include persons who have died (as described above). We used Statistical Analysis System (SAS) software as our primary tool for data entry and analysis.

We used five different methods to calculate county-level HIV prevalence estimates for the chartbook (see Appendix A):

Level 1: AtlasPlus data only (n=13 jurisdictions)
For each state and the District of Columbia, we compared the AtlasPlus state case total for HIV to the sum of the AtlasPlus county-level HIV case data within that state. In addition to discrepancies due to county-level data suppression, discrepancies between state-level case counts and the sum of county case counts occurred when case report forms received by the CDC had incomplete county of residence information. When the county information was not available, the CDC assigned the case to the state but was not able to assign it to a particular county within that state. Among the 14 states that had HIV prevalence data for every county within the state, 13 states were within the +/- 10% discrepancy goal. Therefore, for those 13 states we used AtlasPlus provided county-level case counts for all analyses of HIV county-level prevalence (Alabama, Arizona, Connecticut, Delaware, Washington DC, Florida, Massachusetts, Maryland, Maine, New Hampshire, New Jersey, South Carolina, and Vermont).
Level 2: AtlasPlus data supplemented with data from state surveillance reports and imputations of 1 for suppressed county-level data (n=31 states)

For the remaining states, we supplemented AtlasPlus county-level data with HIV prevalence data from state surveillance reports and imputed values of 1 for counties with data that were suppressed in AtlasPlus, following an approach used by the South Carolina Rural Health Research Center in HIV/AIDS in Rural America: Prevalence and Service. This analysis was possible for 36 states (Rhode Island had no missing county level data in AtlasPlus and Alaska had all counties missing data in AtlasPlus). We found 31 states where the discrepancy using this approach was within the +/-10% discrepancy goal. Therefore, for these 31 states we used Level 2 case counts for all analyses of HIV county-level prevalence (Arkansas, California, Colorado, Hawaii, Iowa, Illinois, Indiana, Kansas, Kentucky, Louisiana, Michigan, Minnesota, Missouri, Mississippi, Montana, North Carolina, North Dakota, New Mexico, Nevada, New York, Ohio, Oklahoma, Oregon, South Dakota, Tennessee, Texas, Utah, Washington, Wisconsin, West Virginia, and Wyoming).

Level 3: State surveillance reports and imputations of 1 for suppressed county-level data (n=4 states)

For four of the remaining states for which we had state-provided HIV prevalence data for each county, we used only state-provided data to calculate county-level data. We found three states where the discrepancy using this approach was within the +/-10% discrepancy goal (Georgia, Pennsylvania, and Rhode Island). For the remaining state, Virginia, the discrepancy was above 10% (13%), but we were unable to improve on this estimate using other methodology, so we used Level 3 case counts for all analyses of county-level HIV prevalence for Virginia.

Level 4: AtlasPlus data supplemented with data from state surveillance reports using district-level data (n=1 state)

Three remaining states provided HIV case counts at the public health district (also called regional) level. We distributed district-level cases to counties within the district based on each county's share of the district's population. We found one state where the discrepancy using this approach was within the +/-10% discrepancy goal (Alaska), and therefore used Level 4 case counts for all analyses of HIV county-level prevalence for Alaska.

Level 5: State surveillance reports using district-level data (n=2 states)

For the two remaining states we used county-level case counts derived from district-level case counts in lieu of case county counts from AtlasPlus. In both states this approach brought the discrepancy with the AtlasPlus state-level case count within the +/- 10% discrepancy goal (Idaho, and Nebraska). For Idaho, we used the state-provided case total as our comparison instead of the AtlasPlus state case total, due to a discrepancy between the AtlasPlus state case total and the state-provided surveillance data.
In October 2019, we obtained geocoded data from the CDC National Prevention Information Network’s (NPIN) Organizations Database for 11,813 organizations that provided at least one of 16 services related to HIV/AIDS, viral hepatitis, and sexually transmitted diseases (STDs). We linked the geocoded data to the 2013 National Center for Health Statistics 6-level urban-rural classification scheme to categorize organizations as located in urban (levels 1-4) or rural (levels 5-6) counties. We also used the geocoded data to determine the U.S. Census region in which organizations were located.

NPIN’s Organizations Database, maintained by NPIN staff since 1987, contains information about organizations that provide services and resources related to HIV/AIDS, viral hepatitis, STDs, and/or tuberculosis. To be included in the database an organization must focus their services on HIV/AIDS, viral hepatitis, STDs or tuberculosis or offer specific programs focused on one or more of these diseases. Organizations include AIDS service organizations, clinics, hospitals, public health departments, social service organizations, and others. Private physicians and practices are not included in the Organizations Database because they generally do not focus on HIV/AIDS, viral hepatitis, STDs, or tuberculosis, and often provide services for established patients only. However, commercial clinics are included in the Database if they have a partnership with a state or local health department to offer these services or are located in an underserved or rural area with limited service options.

NPIN staff identify these organizations’ services using a variety of strategies including searching the internet and reviewing the websites of organizations that are already in the database. When a new organization is identified as providing relevant services, NPIN staff collect information about the organization and the services they offer by reviewing their website and/or contacting the organization by phone. Organizations can also add or update information about their organization through the NPIN and Get Tested websites. Approximately 15 percent of organizations in the database are added through this self-reporting mechanism. The data for all of the organizations included in the database are verified annually. In addition to annual updates, ad hoc updates are made when NPIN staff learn that information about an organization has changed (for example, the name of the organization changes or a service is discontinued). The NPIN Organizations Database has been used by researchers to examine access to HIV/AIDS care and treatment and identify organizations eligible to participate in surveys about provision of care.

Inclusion of an organization in the NPIN’s Organizations Database is not a recommendation or endorsement by the Centers for Disease Control and Prevention or the CDC National Prevention Information Network.
Endnotes

14. The 16 services are HIV/AIDS prevention education, Hepatitis prevention education, Pre-exposure prophylaxis, Post-exposure prophylaxis, HIV/AIDS medical treatment, Hepatitis C treatment and care, PrEP navigation and support services, Chlamydia testing, Gonorrhea testing, Syphilis testing, Hepatitis C testing. Conventional blood HIV testing, Conventional oral HIV testing, Rapid blood HIV testing, Rapid oral HIV testing, and Hepatitis C testing.

15. The Northeast Region comprises CT, MA, ME, NH, NJ, NY, PA, RI, and VT. The Midwest region includes IA, IN, IL, KS, MI, MN, MO, ND, NE, OH, SD, and WI. The Southern region contains AL, AR, DC, DE, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN, TX, VA, and WV. The Western region is made up of AK, AZ, CA, CO, HI, ID, NM, MT, OR, UT, NV, WA, and WY.

17. Ransome Y, Kawachi I, Dean LT. Neighborhood Social Capital in Relation to Late HIV Diagnosis, Linkage to HIV Care, and HIV Care Engagement. AIDS Behav. 2017;21(3):890-904.

Appendix A

<table>
<thead>
<tr>
<th>HIV case count availability</th>
<th>Level 1 (n=13)</th>
<th>Level 2 (n=33)</th>
<th>Level 3 (n=4)</th>
<th>Level 4 (n=1)</th>
<th>Level 5 (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counties missing data in AtlasPlus</td>
<td>AtlasPlus data only</td>
<td>AtlasPlus + state-provided county-level data + imputations of 1</td>
<td>State-provided county-level data + imputations of 1</td>
<td>AtlasPlus + state-provided district-level data</td>
<td>State-provided district-level data only</td>
</tr>
<tr>
<td>State</td>
<td>Total Number of Counties</td>
<td>HIV case count data availability</td>
<td>A. State case total</td>
<td>B. Sum of county case counts</td>
<td>C. State case total</td>
</tr>
<tr>
<td>AK</td>
<td>29</td>
<td>29</td>
<td>650</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AL</td>
<td>67</td>
<td>0</td>
<td>13,184</td>
<td>12,449</td>
<td>-1.1%</td>
</tr>
<tr>
<td>AR</td>
<td>75</td>
<td>4</td>
<td>5,418</td>
<td>5,315</td>
<td>-1.9%</td>
</tr>
<tr>
<td>AZ</td>
<td>15</td>
<td>0</td>
<td>15,426</td>
<td>15,278</td>
<td>-1.0%</td>
</tr>
<tr>
<td>CA</td>
<td>58</td>
<td>2</td>
<td>125,142</td>
<td>123,094</td>
<td>-1.6%</td>
</tr>
<tr>
<td>CO</td>
<td>64</td>
<td>13</td>
<td>12,094</td>
<td>11,848</td>
<td>-1.5%</td>
</tr>
<tr>
<td>CT</td>
<td>8</td>
<td>0</td>
<td>10,121</td>
<td>10,068</td>
<td>-0.5%</td>
</tr>
<tr>
<td>DC</td>
<td>1</td>
<td>0</td>
<td>14,383</td>
<td>14,383</td>
<td>0.0%</td>
</tr>
<tr>
<td>DE</td>
<td>3</td>
<td>0</td>
<td>3,141</td>
<td>3,038</td>
<td>-3.3%</td>
</tr>
<tr>
<td>FL</td>
<td>67</td>
<td>0</td>
<td>107,223</td>
<td>106,389</td>
<td>-0.8%</td>
</tr>
<tr>
<td>GA</td>
<td>159</td>
<td>4</td>
<td>50,189</td>
<td>44,930</td>
<td>-11.2%</td>
</tr>
<tr>
<td>HI</td>
<td>5</td>
<td>0</td>
<td>2,519</td>
<td>2,168</td>
<td>-13.9%</td>
</tr>
<tr>
<td>IA</td>
<td>99</td>
<td>37</td>
<td>2,543</td>
<td>2,385</td>
<td>-6.2%</td>
</tr>
<tr>
<td>ID*</td>
<td>44</td>
<td>17</td>
<td>1,679</td>
<td>533</td>
<td>-68.3%</td>
</tr>
<tr>
<td>IL</td>
<td>102</td>
<td>24</td>
<td>34,610</td>
<td>31,918</td>
<td>-7.8%</td>
</tr>
<tr>
<td>IN</td>
<td>92</td>
<td>9</td>
<td>10,882</td>
<td>10,521</td>
<td>-3.3%</td>
</tr>
<tr>
<td>KS</td>
<td>105</td>
<td>38</td>
<td>2,917</td>
<td>2,797</td>
<td>-4.1%</td>
</tr>
<tr>
<td>KY</td>
<td>120</td>
<td>104</td>
<td>6,846</td>
<td>5,059</td>
<td>-26.1%</td>
</tr>
<tr>
<td>LA</td>
<td>64</td>
<td>2</td>
<td>19,932</td>
<td>19,759</td>
<td>-0.9%</td>
</tr>
<tr>
<td>MA</td>
<td>14</td>
<td>0</td>
<td>19,979</td>
<td>19,812</td>
<td>-0.8%</td>
</tr>
<tr>
<td>MD</td>
<td>24</td>
<td>0</td>
<td>31,927</td>
<td>28,991</td>
<td>-9.2%</td>
</tr>
<tr>
<td>ME</td>
<td>16</td>
<td>0</td>
<td>1,531</td>
<td>1,478</td>
<td>-3.5%</td>
</tr>
<tr>
<td>MI</td>
<td>83</td>
<td>13</td>
<td>15,237</td>
<td>14,884</td>
<td>-2.3%</td>
</tr>
<tr>
<td>MN</td>
<td>87</td>
<td>24</td>
<td>8,011</td>
<td>7,832</td>
<td>-2.2%</td>
</tr>
<tr>
<td>MO</td>
<td>115</td>
<td>24</td>
<td>12,092</td>
<td>11,769</td>
<td>-2.4%</td>
</tr>
<tr>
<td>MS</td>
<td>82</td>
<td>2</td>
<td>9,237</td>
<td>8,450</td>
<td>-8.5%</td>
</tr>
<tr>
<td>MT*</td>
<td>56</td>
<td>22</td>
<td>583</td>
<td>522</td>
<td>-10.0%</td>
</tr>
<tr>
<td>NC</td>
<td>100</td>
<td>2</td>
<td>30,001</td>
<td>28,154</td>
<td>-6.2%</td>
</tr>
<tr>
<td>ND</td>
<td>53</td>
<td>19</td>
<td>371</td>
<td>328</td>
<td>-11.6%</td>
</tr>
<tr>
<td>NE</td>
<td>93</td>
<td>36</td>
<td>2,072</td>
<td>547</td>
<td>-73.6%</td>
</tr>
<tr>
<td>NH</td>
<td>10</td>
<td>0</td>
<td>1,116</td>
<td>1,147</td>
<td>-2.7%</td>
</tr>
<tr>
<td>NJ</td>
<td>21</td>
<td>0</td>
<td>34,428</td>
<td>32,772</td>
<td>-4.8%</td>
</tr>
<tr>
<td>NM</td>
<td>33</td>
<td>6</td>
<td>3,275</td>
<td>3,241</td>
<td>-1.0%</td>
</tr>
<tr>
<td>NV</td>
<td>17</td>
<td>6</td>
<td>8,949</td>
<td>8,819</td>
<td>-1.5%</td>
</tr>
<tr>
<td>NY</td>
<td>62</td>
<td>2</td>
<td>125,550</td>
<td>123,642</td>
<td>-1.5%</td>
</tr>
<tr>
<td>OH</td>
<td>88</td>
<td>2</td>
<td>21,148</td>
<td>20,890</td>
<td>-1.2%</td>
</tr>
<tr>
<td>OK</td>
<td>77</td>
<td>13</td>
<td>5,915</td>
<td>5,803</td>
<td>-1.9%</td>
</tr>
<tr>
<td>OR</td>
<td>36</td>
<td>5</td>
<td>6,698</td>
<td>6,597</td>
<td>-1.5%</td>
</tr>
<tr>
<td>PA</td>
<td>67</td>
<td>6</td>
<td>35,617</td>
<td>22,337</td>
<td>-37.3%</td>
</tr>
<tr>
<td>RI</td>
<td>5</td>
<td>0</td>
<td>2,404</td>
<td>2,101</td>
<td>-12.6%</td>
</tr>
<tr>
<td>SC</td>
<td>46</td>
<td>0</td>
<td>16,405</td>
<td>15,934</td>
<td>-2.9%</td>
</tr>
<tr>
<td>SD</td>
<td>66</td>
<td>38</td>
<td>536</td>
<td>445</td>
<td>-17.0%</td>
</tr>
<tr>
<td>TN</td>
<td>95</td>
<td>6</td>
<td>16,183</td>
<td>16,087</td>
<td>-0.6%</td>
</tr>
<tr>
<td>TX</td>
<td>254</td>
<td>45</td>
<td>84,680</td>
<td>83,851</td>
<td>-1.0%</td>
</tr>
<tr>
<td>UT</td>
<td>29</td>
<td>6</td>
<td>2,708</td>
<td>2,664</td>
<td>-1.6%</td>
</tr>
<tr>
<td>VA</td>
<td>133</td>
<td>8</td>
<td>21,359</td>
<td>17,133</td>
<td>-19.8%</td>
</tr>
<tr>
<td>VT</td>
<td>14</td>
<td>0</td>
<td>656</td>
<td>643</td>
<td>-2.0%</td>
</tr>
<tr>
<td>WA</td>
<td>39</td>
<td>3</td>
<td>12,714</td>
<td>12,532</td>
<td>-1.4%</td>
</tr>
<tr>
<td>WI</td>
<td>72</td>
<td>10</td>
<td>5,999</td>
<td>5,764</td>
<td>-3.6%</td>
</tr>
<tr>
<td>WV</td>
<td>55</td>
<td>7</td>
<td>1,749</td>
<td>1,492</td>
<td>-14.7%</td>
</tr>
</tbody>
</table>

1. The Atlas state case total for Idaho (ID) was based on the state case total from the ID state surveillance report because the AtlasPlus state case total (N=1093) was implausible given the state-provided state case total (N=1679) and total district-level data (N=1679).