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ABSTRACT

Climate change and weather affect the phenology of bird migration;
however, specific climatological factors associated with these observed
effects have only recently been described. The relationship between local,
regional, and global climate patterns and avian migration are increasingly
important to understand due to the widespread, and potentially negative,
implications (such as reduced fecundity) of rapid human induced climate
change on bird populations. Migratory birds are under selective pressure
to arrive at breeding areas at the optimal time to set up nesting territories
and exploit seasonally abundant food resources, and because climate
change has the potential to occur more rapidly than species can adapt
their migratory behavior, negative impacts to populations may occur as a
result of climate change. Human-induced climate change is a driving
factor in changing migration phenology, but the effects may be
confounded by endogenous controls and changing conditions along
migratory routes. However, despite strong endogenous controls, long-
distance migratory birds can alter the timing and rate of migration in
response to a changing climate. In this thesis I explore the relationship

between spring migration phenology and climate.

The literature review addresses the relationships between a changing
climate and corresponding changes in avian migration phenology. I

summarize the current state of understanding of how anthropogenic

iv



climate change is impacting spring migration. The literature documents a
clear change in spring migrant arrival dates over time. To more thoroughly
explore these relationships I present the results of a quantitative data
modeling exercise that models the variation in migration phenology of
birds in Maine. I used publicly available and crowd sourced data to assess
how climate change may be related to the advance in spring arrival dates
of migratory birds in Maine. A model selection approach was used to
develop a predictive model of spring migrant arrival dates. I demonstrate
that, as documented in the literature, many passerine species in Maine are
arriving increasingly earlier in the spring, as documented in the literature
for other regions. Migration strategy, foraging behavior, and pressure
from exogenous and endogenous controls affect migration phenology, but
I demonstrate that anthropogenic climate change has caused an

advancement of median spring arrival times in Maine.
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INTRODUCTION

Phenology is the study of the timing of biological events over the course
of a year (Bradley et al. 1999). Phenology may include study of the cycle
of leaf production in deciduous trees, the timing of salmon migration, the
variation in when lilacs bloom each spring, and bird migration, as well as
any other similar annual process or behaviors that occur in other taxa. The
effects of climate change on global avian migration phenology are well
established in the literature, birds are arriving earlier to spring breeding
grounds than they did just a decade ago (Usui et al. 2017). The different
spatial and temporal scales at which avian migration phenology changes
contribute to our understanding of the underlying mechanisms by which
climate change affects migration. Few researchers have evaluated
phenological changes in migratory populations breeding the U.S.A. state

of Maine.

Each year in spring, and again in fall, millions of birds migrate long-
distances from the tropics and sub-tropics to temperate, sub-arctic, and
arctic regions. Migratory birds are exhibit reoccurring behavior annually,
and as such, they are suitable indicators of the effects of rapid human
induced climate change (Studds and Marra 2011). Birds compete for
mates, territories, and resources at breeding grounds in the spring, and
thus the timing of arrival can ultimately impact reproductive success

(Richardson 1978, Knudsen et al. 2011). Weather patterns and climate



contribute to the timing (i.e., phenology) of annual migrations, as well as
conditions once birds arrive at breeding grounds (Knudsen et al. 2011). In
this review I explore how spring migration phenology is changing at
multiple spatio-temporal scales. These scales include local short duration
(small-scale) conditions such as temperature, as well as regional and
longer duration (intermediate-scale) phenomena such as atmospheric
pressure differentials. Finally, I discuss how global climate change (large-
scale) and corresponding changes in phenology on certain bird species in

Maine, U.S.A.

At the local level and over short periods of time (i.e., weeks or months)
small-scale and short duration weather systems (e.g., how much rain falls
in a given month) may influence spring migration phenology (Studds and
Marra 2011). At an intermediate-scales and time periods (one or two years)
migrant arrival patterns may be driven by regional climate trends, such as
fluctuations in regional temperature patterns and changes in hemispheric
pressure differentials (Hiippop and Hippop 2003). Ultimately, global
large-scale temperature and climate trends, such as human induced
warming over the course of decades, have been shown to affect migration

patterns (Bradley et al. 1999) (Figure 1).
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Migration Behavior Response

Figure 1. Conceptual model of factors driving migration on three scales, small
(a), intermediate (b), and large (c, dashed line). Some factors fluctuate over a short
duration (a) for example annually, whereas other factors fluctuate over multiple
years (b). Long duration factors are evident only over a larger period of time (c).

Migration and arrival timing are largely a function of environmental
conditions but are also driven by endogenous controls and experience (i.e.,
the maturity of the migrant). Therefore, comprehensive analyses of
phenological responses to multiscale spatio-temporal trends often
consider phylogeny, biotic (i.e., food resource availability), and abiotic (i.e.,
climate and weather conditions) factors. Even with these and other
confounding factors, climate has been identified as the most significant
factor contributing to annual and inter-annual variation in spring

migration (Knudsen et al. 2011).



To determine at what spatial and temporal scales climate change is
affecting avian migration phenology I explore how climatic and weather
factors drive spring migration behavior at small, intermediate, and large
scales, as documented in the literature (Table 1). In Chapter 2, I present
the results of the quantitative data exploration and modeling of spring
migrant arrival phenology in Maine, U.S.A. In Chapter 3, I discuss
implications of the themes presented in the Chapter 1 literature review

and my own data exploration from Chapter 2.



CHAPTER 1. LITERATURE REVIEW

I searched JStor and Google Scholar for the terms “avian migration
phenology” and “climate change” and reviewed literature from 1950 -
2017. 1 chose to focus on studies that evaluated migration phenology at
different spatio-temporal scales to determine at which scales climate

change is affecting migration timing.

Table 1. Summary of literature review findings by author and spatio-temporal
scale.

Spatio-
Citation Temporal Summary of Findings
Scale
Changes in precipitation influenced abundance of insect
Studds and
Small Scale food resources which changed migration departure dates
Marra 2011
of American redstart.
William et al. Wind direction and speed affected the flight speed and
Small Scale
1977 duration of migrant flight in the Caribbean

Migration rate (birds/km/hour) was correlated with

variation in other local small-scale weather conditions
Ernie et al. 2002  Small Scale

including temperature, atmospheric pressure, cloud cover,

and wind speed and direction

Used radar to demonstrate a significant increase in the
Kemp et al. 2010  Small Scale rate of migration in the Netherlands during the passage of

weather fronts in spring and fall




Chapter 1

Demonstrated a clear relationship between NAO and the

Wilson 2007 Intermediate behavior of some passerine migrant species in Maine due
to the fluctuation of NAO.
Showed that NAO explained a significant amount of
Marra et al. 2005 Intermediate
variation in migration behavior for multiple species.
Proposed that changes to migration phenology are a result
Cotton 2003 Intermediate of variation in seasonal duration at wintering grounds and
not NAO or ENSO at breeding grounds.
Hiippop and The relationship between earlier arrival dates and higher
Intermediate
Hiippop 2003 NAO values was statistically significant in 21 species.
MacMynowski Seventy-three percent of the long-distance migrant
Intermediate
and Root 2007 species’ spring migrations were correlated with NAQO.
Demonstrated a significant change in arrival date across a
Bradley et al. 61 year study period, 6 avian species (37.5%) arrived
Large
1999 earlier, and overall 19 (35%) of the phenophases evaluated
showed statistically significant increases in “earliness”.
Birds arrived at breeding grounds an average of 0.12 days
Ward et al. 2016  Large earlier per year across the 50 year study period. Overall,
all 16 species had significantly earlier first arrival dates.
Of 32 species studied, 8 species had mean arrival dates
Miller-Rushing
Large significantly earlier across the 33 year study, which was
et al. 2008
directly attributed to effects of climate change
Showed that birds advanced spring migration by 2.1 days
Usui et al. 2017  Large per decade using 73 studies of migration phenology from

1749 - 2014 across 5 continents and 413 species.




1.1 Migration

For the purposes of this review, I restricted my literature to that covering
the northern hemisphere. Similar phenomena occur in the Southern
Hemisphere, but the majority of accessible literature is from North

America and Europe (Usui et al. 2017).

I define migration as the seasonal movement of birds from wintering areas
to breeding grounds each year (Alerstam and Christie 1993). Individuals
arrive in the Northern latitudes of the east and west hemisphere each
spring in time to mate, raise young, and consume seasonally abundant
food resources before migrating back to wintering grounds in more
southerly latitudes in fall. For example, approximately 80% of avian
species that breed in northern North America spend winter in sub-tropical
and tropical latitudes of North America, the Caribbean, Central America
and South America (Richardson 1978). This bias in the literature may be a
result of fewer studies conducted in the Southern Hemisphere or a

language bias with fewer studies published in English from this region.

Spring migration (i.e., northbound movements) occurs from early April to
late May, but the precise timing varies by latitude and species (Morris et
al. 1994, Berthold 2001, Morris et al. 2003, Mills et al. 2011). Fall migration
is less compressed, beginning in mid-August and continuing through

October or later, and thus autumnal migration phenology can be more



difficult to accurately quantify than spring phenology (Morris et al. 1994).
Although autumnal migration may consist of a larger number of birds
than spring migration (presumably due to recruitment from young of the
year), spring migration is characterized by a greater number of migrants
arriving during compressed time periods (Stevenson 1957). The relatively
short duration of spring migration may arise from birds striving to arrive
at breeding grounds before intraspecific and interspecific competitors do
(Bruderer 1997, Karlsson et al. 2012). Observations of the phenology of
spring migration are more likely to be representative of the breeding
population as a whole, than are samples of fall migration, which for many
species is more diffuse. Therefore, spring migration phenology trends
should serve as a better model for the effect of climate change on

migratory behavior.

1.2 Weather and Climate Indices

Weather (i.e., which is the condition of the atmosphere at a given time, and
climate, (i.e., which is trends in atmospheric conditions over longer
periods of time) are particularly strong drivers of migration, and high
quality data on weather conditions at different spatio-temporal scales are
needed to measure the relationship between weather and migration
phenology (Gordo 2007). Fortunately, high quality empirical weather data
are readily available from long-term weather stations and automated
sensing equipment. Weather stations can monitor real time temperature,

wind speed, wind direction, and barometric pressure at frequent intervals,
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generating a robust historical record of weather and climate conditions.
These observations are then used individually to describe local small-scale
trends, in combination with regional data sets to characterize
intermediate regional weather phenomena, or included in large meta-

analyses to describe global climate conditions.

The effects of weather on migration, especially from data recorded over
long periods of time, may be summarized in multiple ways. For example,
studies that are conducted for only a single migration season may use
temperature data recorded within the study area daily or hourly. For
longer duration studies, researchers often use regional datasets that are
expected to be representative of the study area and that can be
summarized by month or year. For example, Hiippop and Hippop (2003)
used mean temperature recorded during the spring migration period, and
Ward et al. (2016) used daily minimum and maximum air temperatures to
calculate a mean daily temperature and then averaged these values across
a 50 year study period. These different temperature data summaries are

used to assess migration phenology responses to temperature variation.

1.3 Migration Data Collection

Different metrics generated by the different methods of observing avian
migration provide variables that are useful for building models of
migration phenology when incorporating local, regional, and global scale

weather predictor variables. Unlike weather conditions, observations of



migratory birds are more challenging to record. Birds are highly mobile,
small relative to human observers, and can be difficult to track (Tasker et
al. 1984). Therefore, researchers have developed different techniques to

document migratory behavior of birds.

Generally, three categories of migratory bird observations provide data on
spring migration phenology. Observations of birds departing wintering
grounds provide a temporal starting point for a migration event.
Observations of birds starting migration, often called “departure
observations”, may be confounded by different individuals departing at
different times, but they are useful in providing a timespan of when a
population’s migration begins. Then there are observations made during
migration, en route to breeding areas. These en route observations may
include observations of birds in flight or arriving and departing to and
from stopover areas. Finally, there are observations of birds arriving at
their final breeding area for the season. These “arrival observations” may
be more accurate than departure or en route observations, because birds,
males in particular, exhibit obvious changes in behavior upon arrival when
they begin to establish a breeding territory, and are easier to observe

(Alerstam and Christie 1993).

Different techniques have been developed to generate avian migration
data, including traditional visual observations as well as technologically

aided techniques. Traditionally, observers used binoculars or other optics

10



to enhance detection probabilities (e.g., Tasker et al. 1984). These
observations generate basic information about species identities, arrival
times, and other behaviors (e.g., foraging activity). These traditional direct
observations are the most common method for sampling migration
behavior, but other methods of sampling migration generate different
types of data. Recently, citizen science initiatives such as eBird have given
all observers the ability to record and share their observations, making

them useful and readily available for scientific studies (Wood et al. 2011).

Direct methods of sampling avian migration, such as capturing and
banding birds, provide additional metrics about migrants, including sex
and physical condition (Gustafson et al. 1997). Recently, technological
advances including radar, acoustics, thermal imaging, and GPS technology
have been employed to sample behavior of migratory birds (Haselmayer
and Quinn 2000, Nohara et al. 2007, Bridge et al. 2011). Each method
provides a different type of information on migrants and migratory
behavior. For example, radar systems allow scientists to study the number
of migrants using a given air space and the relative height and flight speed
of birds, but it provides no information about which species are being
tracked (Nohara et al. 2007). Acoustic monitoring can provide data on the
species composition of migrants, but it is limited by the distance at which
a microphone can record individuals and may be biased by infrequent
vocalizations during flight (Haselmayer and Quinn 2000). Thermal

imaging, along with radar and acoustics, can be useful for observing
11



nocturnal migration patterns, but it has a limited detecti‘(;n range and
provides only relative information about size and body type insufficient
for species recognition. Nano-tags and GPS tracking technology are precise
methods for tracking and recording observations of migratory birds, but
they are often limited by the number of individuals that can be realistically
outfitted with tags and trackers, thus limiting sample size (Schwarz et al.

1993, Diemer et al. 2014, Brown and Taylor 2015).

In order to model avian migration patterns, we need data describing
observed patterns. Common metrics of migratory bird behavior include
date of arrival at known migratory stopover locations and breeding
grounds, observations of birds during migration along migratory
thoroughfares, and date of departure from wintering grounds (Hiippop
and Hiippop 2003, Studds and Marra 2011). These dates can be generated
by direct observation of birds or by any other methods previously
described. Arrival dates (i.e., the first date birds arrive at summer breeding
areas) and other observations are often described using summary
statistics such as first arrival date, mean arrival date, and median arrival
date. First arrival dates are often used for studies of migration phenology,
but they are heavily biased by population demographics, especially across
years (Usui et al. 2017). For example, in a year with a particularly large
number of new recruits to a given population there may be an adherently
higher number of earlier or later arrivals, which would skew a mean arrival

date earlier. Conversely, few observations of individuals early, or late,
12



might similarly bias a mean arrival date. Other metrics are less biased by
demographics, such as mean arrival date. By using the average date of
arrival of each individual in a given population to a specific area during
the breeding period in spring, small population sizes or observation
period are less likely to influence observations. Similarly, median arrival
date or first arrival dates can be used to describe migration phenology.
For example, the median arrival date for all American redstarts in Maine

from 1994 - 2005 was estimated to be May 15 (+ 6 days) (Wilson 2007).

To understand how climate change is impacting migration, researchers
have used migration metrics in statistical models to develop models of
migration; however, there are differences in the relative amount of bias in
the different types of independent variable metrics used. For example, in
Usui et al.’s (2017) meta-analysis of 73 migration phenology studies, the
researchers noted that studies using first arrival dates were more subject
to bias than those using mean or median arrival dates (the researchers did
not differentiate between studies with mean and median arrival dates).
Bias in first arrival date variable was attributed to data collection methods
that may have resulted in an incomplete sampling of a portion of the
migration period or in fluctuations in the size of the sample population.
These errors resulted in a prediction fewer migrants arriving in a given

year, which may have affected detection probabilities (Usui et al. 2017).

13



The following sections describes the different scales of weather and
climate change mechanisms. I have categorized these independent factors
and the corresponding variation in migration phenology into; small,

intermediate, and large temporal and spatial scales.

1.4 Small-Scale Trends and Responses
1.4.1 Small-Scale Weather Trends

Wind, temperature, precipitation, and food resources may drive migration
patterns over short periods of time (i.e., hours and days) and across
relatively small geographical areas (i.e., a few hectares to a few hundred
hectares) (Erni et al. 2001, Studds and Marr 2011). These small-scale
trends in localized weather conditions influence migration phenology,
probable impacts include departures from wintering areas and shifts in

duration of migration period (Gordo 2007).

Wind, temperature, and precipitation are generally functions of the
interactions of different air masses in the atmosphere, the relationship
between high and low atmospheric pressures, and the variable amount of
moisture that different air masses can hold. The changing dynamics of
cool and warm air manifest as differences in atmospheric pressure, and
the movement of air within and across different pressure gradients causes
increased wind speeds and may result in precipitation or storms (Figure
2). High-pressure systems are generally dry and unlikely to result in

precipitation, whereas low pressure systems often produce rain. A low-

14



pressure system is an area of low atmospheric pressure typically
accompanied by strong winds, temperatures fluctuations, and
precipitation (Bagg et al. 1950). Passage of these low pressure systems is
often followed by the arrival of a high pressure system, with few clouds,
little to no precipitation, and light winds aloft, but passage of the front is
destabilizing and may lead to short duration storm conditions (Figure 2).
These short duration, relatively localized atmospheric phenomenon
directly affect migratory behavior and indirectly influence migrants due

to secondary the impacts on changes in food resource availability.

1.4.2 Small-Scale Weather Trends and Corresponding Changes in
Phenology

Researchers have evaluated how small-scale weather trends such as
localized precipitation, wind, and temperature patterns may affect
migratory bird behavior. A multiyear study of American redstarts
(Setophaga ruticilla), an insectivorous neotropical wood-warbler, was
conducted to evaluate local weather conditions on migration from
wintering areas in two forest types in Jamaica (Studds and Marra 2011).
The author documented short term weather impact on migration
departure dates and on availability of food resources in wintering areas.
For every 50 mm annual reduction in March rainfall, there was an
equivalent 3-day advance in departure of male birds in second-growth
scrub across the six year study period (Studds and Marra 2011). The

magnitude of the effect of rainfall on migration departure differed

15



depending on the American redstart’s wintering habitat (mangrove or

scrub) and whether the individuals were male or female.

Studds and Marra (2011) used a linear mixed model, including rainfall and
sex, to demonstrate a change in spring departure dates of 74 American
redstarts from Jamaican wintering areas including birds from black
mangrove forest and second-growth scrub. Of interest is the consistently
earlier departure dates of males, presumably these earlier departures gain
the migrant some sort of competitive advantage on breeding territories

(Studds and Marra 2011 Figure 2).

To further investigate the relationship among rainfall and departure
dates, Studds and Marra (2011) sampled arthropod biomass in late spring.
Arthropod biomass varied in relation to the quantity of rainfall in March,
with biomass greatest when rainfall was highest. The researchers included
arthropod biomass as a variable in a linear mixed model of departure
dates and precipitation and they concluded that, on average, American
redstarts of mangrove forests delayed departure by 1-day for every 9.2 mg
reduction in arthropod biomass (Studds and Marra 2011). This effect was
even more pronounced in the scrub habitat population, resulting in a 1-
day departure delay for a 3.5 mg reduction in arthropod biomass. These
findings are a clear example of how small-scale weather trends occurring
over a short time period drive migration phenology, but they do not

demonstrate causation.

16



In addition to precipitation, researchers also investigated how localized
wind speeds and directions potentially affect migration phenology.
Observations of wind speed and direction in light of bird migration
patterns include early work by William et al. (1977) and more recent
studies by Kemp et al. (2010). Williams et al. (1977) collected data that
have served as a benchmark for future studies of localized weather
conditions and migration. They used marine radar to observe a
relationship between migrant departure time and localized effects of low
pressure fronts and associated wind directions and speeds. Wind direction
and speed affected the flight speed and duration of migrant flight in the
Caribbean. Migrants were more likely to depart ahead of, or after, passage
of a low-pressure front than when a front was stationary over an area
(Willams et al. 1977). The authors concluded that passage of low-pressure
systems potentially trigger migration departure by providing favorable
wind speeds and vectors that would facilitate migratory flight. Rate and
altitude of migration across the Caribbean and western Atlantic Ocean was
associated with variability in these localized weather systems. Although
the researchers presented no clear statistical evidence for weather impacts
on migration rate and altitude, their use of radar technology was a ground-
breaking approach to migration research at the time. Although their study
lacked rigorous statistical analysis, their methods set the stage for other

the use of radar by other ornithologists.
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Erni et al. (2002) identified a clear relationship between migratory
behavior and localized weather conditions in Germany, using a modern
avian radar system to observe migration rates under different wind and
rain conditions (Erni et al. 2002). Conical scanning pencil beam tracking
radar produced a concentrated radar beam capable of high resolution
returns that sampled nocturnal avian migration in Germany. They found
that a significant negative correlation between migration intensity and
rain duration; greater rain duration was correlated with reduced migration
intensity. Migration rate (birds/km/hour) was correlated with variation in
other local small-scale weather conditions including temperature,
atmospheric pressure, cloud cover, and wind speed and direction (Erni et

al. 2002).

In 2010 Kemp et al., used radar to demonstrate a significant increase in
the rate of migration in the Netherlands during the passage of weather
fronts in spring and fall. Migration occurred 16.9 % faster than fall
migration through the same area due to localized effects of wind speed
and direction (Kemp et al. 2010). Migration speed is the speed of
individual migrants, and migration rate is the magnitude of individuals

moving through a given area.

1.5 Intermediate-Scale Trends and Responses

Small-scale weather conditions vary over a short time period (e.g., days or

months) and act on discrete geographic areas such as an island or
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ecoregion. Intermediate-scale weather trends occur over a year or multiple
years and across a larger spatial area. Studies demonstrate that small-
scale, short duration localized weather conditions are correlated with
migration phenology on a seasonal basis in different migratory
populations in the northern hemisphere (Williams et al. 1977, Erni et al.
2002, Kemp et al. 2010, Studds and Marra 2011). Similar patterns have
been observed with intermediate-scale climate trends and migration

phenology.

1.5.1 Intermediate-Scale Climate Trends

Intermediate-scale trends in weather are often associated with annual and
multiyear fluctuations such as the El Nifio/Southern Oscillation (ENSO)
and the North Atlantic Oscillation (NAO). ENSO and NAO are complex
climate phenomenon that can be summarized in a numerical index
(Hurrell 1995, Timmermann et al. 1999, Both 2010). ENSO is also referred
to as the Oceanic Nino Index (ONI) or Southern Oscillation Index (SOI) in
the literature. The phenomenon and the index will be referred to as ENSO

in this review.

ENSO is an index used to classify sea surface temperature regimes and
atmospheric pressure differentials in the Pacific Ocean (Graf et al. 2014).
The ENSO index has two components. The first component is the Southern
Oscillation, which is the difference in atmospheric pressure readings on
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the island of Tahiti and in the city of Darwin, Australia, and the second
component is the sea surface temperatures in the equatorial Pacific

region.

Because weather in eastern North America is predominately driven by the
Jet Stream, which brings weather systems across North America from west
to east, variation in ENSO can be a strong determinant of weather across
the continent (Hurrell 1995). ENSO fluctuations are correlated to
variations in precipitation in the Midwest, southeastern U.S., and
Caribbean, as well as the northeast U.S. During years with high ENSO index
values (El Nifio), rainfall generally increases across the southeastern U.S.;
in years with lower ENSO index values (La Nifia), precipitation is generally

less abundant in the southeast U.S. (Herring 1999, Welker 2012).

Differences in atmospheric pressure in the North Atlantic Ocean (i.e.,
NAO) noticeably affect seasonal temperature and precipitation regimes in
western Europe (Hurrell 1995). These pressure differentials also affect
weather in eastern North America. A higher NAO index, which
corresponds to lower low pressure over Iceland and higher high pressure
over the Azores, usually correlates with an increase in the prevalence of
southwesterly winds over the eastern U.S. and Canada due to changes in
the location and intensity of the North American jet stream. Increased
intensity of the Jet Stream as a result of the higher North Atlantic pressure

gradient allows cold arctic continental air, primarily situated over Canada,
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to be carried off the continent, thus preventing cold dry air from building
up and draining south, allowing warmer, wetter conditions to dominate.
Increased Jet Stream intensity from NAO often manifests as warmer and
wetter than average winters in the New England region of the U.S. and
elsewhere in eastern North America (Hartley and Keables 1998). The
opposite effect is also noticeable when the NAO index is low (i.e., the
difference in atmospheric pressure between Iceland and the Azores is less
pronounced), resulting in more severe and longer winters in the
northeastern U.S. because the lower intensity pressure gradient over the
North Atlantic is less efficient at drawing cold continental air off northern
North America, and thus cold dry air vortices can form and stagnate over

eastern North America (Hartley and Keables 1998).

NAO is a complex atmospheric weather phenomenon summarized by a
simple index. NAO is a measure of intensity of atmospheric pressure
differentials above the southern and northern North Atlantic Ocean.
Specifically, NAO is a value that tracks the difference in magnitude of high
pressure at Ponta Delgata, Azores, Portugal and low pressure near
Stykkisholmur, Iceland (Hurrell 1995). NAO values fluctuate based on the
difference in atmospheric pressure across a given length of time and range
from -1 to 1 (Hurrell 1995). Both the NAO phenomenon and index will be

described as NAO herein.
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1.5.2 Intermediate-Scale Trends and Corresponding Changes in
Phenology

Changing patterns in the fluctuation and magnitude of both ENSO and
NAO have been linked strongly to rapid human induced climate change
and are thought to play a role in driving migration timing (Hurrell 1995,
Timmermann et al. 1999, Karl and Trenberth 2003, Donat et al. 2014,
Sydeman et al. 2014). Intermediate-scale climate trends such as ENSO and
NAO explain some variation in migratory activity over 3 - 8 year periods,
although the extent of variation in spring arrival timing that can be
explained by these phenomena is not consistent in the literature (Cotton
2003, Huppop and Huppop 2003, Marra et al. 2005, Wilson 2007,

MacMynowski and Root 2007).

Wilson (2007) used observational data of spring migrants collected by
volunteers to analyze the relationship between NAO and median spring
arrival dates of passerine migrants with quantile regression. They
included the fluctuation of NAO index values in their model of spring
migration phenology in Maine and demonstrated a clear relationship
between NAO and the behavior of some, but not all, passerine migrant
species (Wilson 2007). Of the 105 species included in Wilson’s 12-year
study, only 10 species’ arrival dates were related to variation in NAO, yet
in a clear majority of the species (60 species out of 105 total) there was a

relationship with at least one climatic factor. Thus NAO explained
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variation in spring migration phenology for 25 of the 105 species, but

temperature explained in spring migration for 30 of the 105 species.

Marra et al. (2005) evaluated changes in phenology of long-distance
migratory birds in North America using a long-term data set consisting of
32 passerine species captured in Louisiana and captured again at two
other mist-netting locations 2,500 km to the north in the eastern U.S.A.
and Canada. They sought to understand how climate change might affect
the timing and rate of migration, and how arrival times may be related to
plant growth (common lilac [Syringa vulgaris] was used as a surrogate for
native vegetation because of the abundance of data on their flowering
phenology) and NAO (Marra et al. 2005). Marra et al. (2005) showed that
NAO explained a significant amount of variation in migration behavior for

multiple species, but not all.

The effect of NAO on spring migrant capture dates varied, with data from
some species negatively correlated with NAO (n = 17) and dates for other
species positively correlated with NAO (n = 28). The only statistically
significant correlations were positive relationships between NAO and
mean capture dates in three species (Marra et al. 2005). The author
concluded that long-distance passerine migrants in North America
adjusted timing and rate of migration to match annual variations in
ambient temperature, and that some species are affected by intermediate-

scale climatic trends such as NAO.
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Although Marra et al. provide evidence of a relationship between NAO and
migration phenology in some species, other authors found no conclusive
evidence of the effects of NAO or ENSO on spring migration phenology.
For example, Cotton (2003) analyzed spring migration of 20 species in the
United Kingdom over a 30 year period from 1971 through 2000. Cotton
used the first arrival date of trans-Saharan migrants (i.e., species that
overwinter in sub-Saharan Africa but breed in the UK. and elsewhere in
Europe) to evaluate the effect of NAO and ENSO on spring migration.
Migrants arrived earlier in the UK., by approximately eight days over the
30 year period, but was not able to show a statistically significant
correlation between that phenological response and either NAO or ENSO.
Cotton suggested that changes to migration phenology are a result of
variation in seasonal duration at wintering grounds and not NAO or ENSO
at breeding grounds (Cotton 2003). The use of first arrival date, instead of
mean or median arrival dates, as a metric of spring migration may have
biased Cotton’s results because of the effects of inter-annual changes in
demographics on first arrival numbers. Nonetheless, other researchers
working with similar species using a broader geographic area and long
duration data sets have observed a strong relationship between NAO and
migration and have attributed these changes to rapid human induced

climate change (Hiippop and Hiippop 2003).

Hippop and Hiippop (2003) used a continuous 41-year dataset on

passerine migratory behavior from the island of Helgoland in the North
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Sea to describe the relationship between NAO and mean spring arrival
times of birds migrating to northern Europe. The study focused on arrival
time of 24 species at a common en route migratory stopover site. Species
included both long- and medium-distance migrants, representing tens of
thousands of individuals. Hiippop and Hiippop used Student’s t-test to
test for a relationship between NAO variations and mean spring arrival
times. Furthermore, they used species-specific migration periods as
opposed to generic spring migration periods used by other researchers, to
avoid biases that could result from fitting all species to the same
migration period model. By using species specific migration models their
assessment was more sensitive to inherent interspecific differences in

migration period.

Of 24 species, 23 species had arrival times that trended earlier during the
study period, and these earlier arrival times were attributed to higher NAO
values. The relationship between earlier arrival dates and higher NAO
values was statistically significant in 21 species. Furthermore, NAO was a
disparately greater factor (i.e., contributing to later and earlier arrival
times depending on the NAO values) in the arrival time of long-distance

migrants compared to medium-distance migrants.

Similar to Hippop and Hiippop’s work in Europe, researchers have
characterized the long term response trend of migratory birds to NAO

patterns in the U.S.A. (MacMynowski and Root 2007). A dataset spanning
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21 vyears of observations from Chicago provides evidence of the
relationship between NAO and spring migration phenology in North
America (MacMynowski and Root 2007). The authors used data from 22
species to evaluate the relationship between NAO and spring arrival times,
and they also modeled this relationship separately for each sex and
different migratory strategies. The researchers obtained capture data
from the Field Museum of Natural History in Chicago, U.S.A. from 1979 -
2000 and used three different temporal metrics of migration from the
Chicago dataset: first arrival, onset of continuous migration, and median
of migration period. In addition to climate indices of NAO and ENSO, they
used regional averages of mean temperature anomalies, species, sex, and
different time periods in their regression models to account for other
sources of variation. Seventy-three percent of the long-distance migrant
species’ spring migrations were correlated with NAO compared to all
species combined (45%) and short-distance migrants (18%). This trend was
most prevalent in males, with up to 75% of male migration correlated
significantly with NAO. The trend was different for responses to
temperature. A large proportion (73%) of short-distance migratory species
showed statistically significant correlations between migration timing and
regional mean temperature, compared with long-distance migratory

species (18%) and all species (45%).

Similar to NAO, the response to temperature variation was

disproportionately statistically significant for males. Thus, NAO may be
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responsible for more variation in migration phenology of long-distance
migrants, whereas small-scale trends such as regional temperature trends

may account for more variation in short-distance migrants.

Regardless of variability in the magnitude of the effect of intermediate-
scale climate trends on migration behavior as described in the literature,
a clear pattern of increasingly earlier arrival dates is evident. This
tendency is especially clear in long-term studies (Hiippop and Hiippop

2003), which showed advances in arrival dates of 0.05 - 0.25 days per year.

1.6 Large-Scale Trends and Responses

The effects of human induced climate change are most evident at large
spatio-temporal scales. Climatological trends discussed in the previous
sections occur primarily at small and intermediate-scales, but those
trends also indicate global climate patterns that we now understand as
human-induced climate change (Maclean et al. 2017). Small and
intermediate-scale climate trends clearly affect spring migration;
therefore, it is important to account for the variability induced by those
factors, such as temperature, precipitation, and NAO, to determine if an

underlying large-scale trend drives spring migration phenology.

1.6.1 Large-Scale Climate Trends

In this review I define large-scale climate trends as multi-year and multi-
decade changes in fundamental climate processes. I also included

associated responses in a biological system observed over long periods of
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time in this definition. Large-scale trends in this context can be
represented by the variable “year”. Migration responses to small-scale and
intermediate-scale trends may be susceptible to confounding factors, such
as variability in weather conditions that doffer across multiple geographic
locations along migration routes or to stochastic variation within years.
Large-scale phenomena affecting the entirety of the earth’s system and
operating over multiple years or decades should be less susceptible to
confounding factors and artefacts in observational data sets because
metrics of global scale are compilations of data from thousands of locales.
Likewise effects of anthropogenic climate change on migration phenology
are clearly evident when climate variables and associated biological

responses are observed over multiple decades.

1.6.2 Large-Scale Climate Trends and Corresponding Changes in
Phenology

Increases in global temperature as a result of greenhouse gas emissions
and other pollutants from human activities are manifested in the temporal
advancement of migration and breeding (Bradley et al. 1999, Hiippop and
Huppop 2003, MacMynowski and Root 2007). Higher global temperatures
are resulting in earlier spring conditions that are in turn followed by

earlier arrival dates (Bradley et al. 1999).

Although birds cannot judge weather conditions of destinations prior to
embarking on migration, autocorrelation of climatic variables, including

temperature, occurs across large spatial areas (Gordo 2007). Warmer
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conditions at departure points and along migration routes generally
correlate to warmer weather conditions at breeding grounds, and these
associations may lead to migrants arriving earlier at their breeding

destinations (Gordo 2007).

Researchers working in southern Wisconsin, U.S.A. used a unique dataset
spanning a 61 year period to evaluate effects of human induced climate
change on phenology (Bradley et al. 1999). They used observations of
spring migration made by Aldo Leopold from 1936 to 1947 coupled with
observations made by the researchers from 1976 to 1998. This long-
duration study period, although not continuous, included observations of
55 different annual phenomenon (i.e., phenophases) of plants and birds,
including spring arrival dates. The researchers used lake ice trends as a

substitute for regional temperature.

The large temporal scale of the data set allowed Bradley et al. (1999) to
develop robust models of phenophases and annual spring temperature
trends. Although other taxa, not just birds (arrival of birds comprised 16
of 55 phenophase observations), exhibited a significant change in arrival
date across the study period, 6 avian species (37.5%) arrived earlier, and
overall 19 (35%) of the phenophases evaluated showed increases in

“earliness” (Bradley et al. 1999).

Bradley et al.’s research demonstrates the effects of climate change (i.e.,

increasing temperature) on spring migration phenology, although not all
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bird species in the study exhibited the same response. Ward et al. (2016)
compiled data on 16 migratory species across a 50 year study period from
1964 -2013. The researchers used the first arrival date of these 16 species
at breeding grounds in the central Arctic Alaskan coast to demonstrate
effects of climate change on migration phenology. Ward et al. also used
small and intermediate scale trends in their model, but most of the
variation was explained by year. Of particular interest was the magnitude
of the response: birds arrived at the breeding grounds an average of 0.12
days earlier per year across the study period. Overall, all 16 species had

significantly earlier first arrival dates.

Miller-Rushing et al. (2008) modeled migration phenology and climate
change at the Manomet Research Station in coastal Massachusetts (1970-
2002). The researchers modeled effects of climate change on migration by
including ecological and climatological factors in a multi-decadal model
of the migration timing of 32 species. The researchers sought to identify
and quantify sources of variation in response to climate change. Miller-
Rushing et al. included specific measures to avoid biases from not only
climate factors, but also ecological factors such as migratory distance,
breeding habitat, and food availability. They also avoided use of first
arrival dates, which they contended are not reliably characteristic of the
migratory cohort as a whole and can be biased by inter-annual fluctuations

in population sizes.
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Of the 32 species studied, 8 species had mean arrival dates statistically
significantly earlier across the 33 year study, which was directly attributed
to effects of climate change. In contrast, for those same 8 species, there
was no statistically significant change in first arrival dates during the
study period. There was also statistically significant intra-specific
variation in arrival dates. Notably, during the 33 year study period,
migratory population cohorts of 19 of the 32 species exhibited an average
of a 34% decline in population size, which was attributed to effects of
climate change, but is also relevant in the bias inherent with the use of

first arrival dates as a metric for migration phenology.

Miller-Rushing et al. used multiple regression models including cohort
size and either first arrival or mean arrival dates. Cohort size explained
much of the variation in first arrival dates but not in mean arrival dates.
The author explained that the decrease in cohort size caused a 1.6 day
change in first arrival date during the study period, which was noted as
an artefact of the bias in using first arrival dates and not a result of
underlying climatological factors. Nonetheless, Miller-Rushing et al.’s
study showed a clear change in mean arrival dates over the 33-year study
period, which was not explained entirely by cohort size or migratory
behavior, and which was attributed to human-induced rapid climate
change (e.g., a 1.5° C increase in spring temperatures across the 33-year
study period). They also noted inter-annual variation in migration

advancement rates, with birds migrating generally earlier in warmer years,
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especially species migrating from wintering grounds in the Caribbean,

Central American, and southern North America.

Usui et al. (2017) published a robust meta-analysis using 73 studies of
migration phenology from 1749 - 2014 across 5 continents and 413
species. This meta-analysis builds on some themes evaluated in the Miller-
Rushing et al. paper, as well as literature described in the Small-Scale and
Intermediate-Scale sections. Usui et al. accounted for not only
climatological variables and ecological variables, as did Miller-Rushing et
al. and others, but they also included phylogeny in their meta-analysis of

temporal shifts in migration phenology.

Usui et al. determined the slope values of spring migration changes within
the 73 studies used in their meta-analysis. They used both first arrival
dates and mean/median arrival dates of spring migrants (the researchers
did not differentiate between mean and median), and they found highly
statistically significant trends for earlier spring migration over the study
period. They noted that the steepest advance in spring migration occurred
between the 1920s and 1990s. Furthermore, advances in migration timing
between breeding grounds and at stopover sites en route to breeding
grounds did not vary significantly. Over time, on average, the species
included in their multi-century meta-analysis advanced spring migration
by 2.1 days per decade. Short distance migrants advanced their migration

timing more than longer distance migrants did, but all species showed an
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advance in migration timing across the study period. However, migration
timing was sensitive to changes in annual temperature, which affected the
magnitude of the response across species and populations. For example,
during warm years, migration may have advanced more than in cool years,
although the overall trend was towards significant advances in spring
migration. Similar to Miller-Rushing et al., Usui et al. concluded that first

arrival dates exhibited more inherent bias that mean/median arrival dates.
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CHAPTER 2 - QUANTITATIVE DATA EXPLORATION

2.1 Introduction

There have been few attempts to model climate change’s effect on the
migration phenology of Maine’s bird populations, with the exception of
Wilson 2007. As summarized in Chapter 1, advancement in spring
migration has been observed in many regions of Europe and North
America. I theorized that the same factors contributing to advancements
in spring migration elsewhere are acting on birds breeding in the state of
Maine. To explore the effects of climate change on migratory birds in
Maine I present the results of a quantitative data modeling exercise which
models the variation in phenology of a selection of neo-tropical migrant
bird species and the same climatic factors evaluated in the literature as
summarized in Chapter 1. I used publicly available and crowd sourced
data to assess how climate change may be related to the advance in spring
arrival dates of migratory birds in Maine. I used a model selection
approach to develop a predictive model of spring migrant arrival dates.
The results of Chapter 1 Literature Review guided the modelling approach

employed in Chapter 2.

The goal of this exercise was to 1) determine the amount of variation in

spring migration that can be explained by climate, and, 2) to model the
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median arrival dates of 29 species of bird from 1982-2014. [ used climate
variables including temperature, NOA, ENSO, and other climate indices, as
well as year, to build a predictive model of spring migration arrival times.
As documented in the literature collected in the Northern Hemisphere, I
predicted that many migratory bird species in Maine are arriving
increasingly earlier in spring, and that this earlier arrival is likely

correlated to climate change.

Open source software and public data sets are advantageous because they
are widely available to the broader scientific community and allow
researchers to utilize the same methods. There is a growing movement for
increased transparency of data collection and analysis in the scientific
community, and measures that enable replication of studies by fellow
researchers can be facilitated by using open source software and publicly

available.

2.2 Methods

2.2.1 Data Sources

To model the effects of climate change on spring avian migration
phenology in Maine, I accessed data from multiple publicly available
sources, including data on arrival dates of spring migrants from eBird, and
NAO, ENSO, and other weather variables and indices from the National

Oceanic and Atmospheric Administration (NOAA,;
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www.ncdc.noaa.gov/extremes/cei/, and Table 2). I developed multivariate

regression models and mixed linear-models, and, used model averaging.

For spring migration data, I was granted permission to access eBird data
after submitting an inquiry to their website (www.ebird.org). The eBird
dataset consisted of observations submitted to eBird by volunteers and
citizen scientists from across Maine. Approximately 70% of eBird
observations came from the more densely populated areas of the state
including the southern, coastal, and central regions, giving the dataset

geographic sampling biases.

The eBird dataset provided the full set of quality controlled records for all
observations in Maine between 1982 and 2014. I selected a subset of these
data for my analysis by truncating the data set and only including
observations during the spring migration period from March through May
31, 1982-2014. By starting with data from March I was able to assure that
any early first arrival migrants were included in the analysis. From this
modified dataset I selected 50 migrant species (including species from the
families Parulidae, Vireonidae, Icteridae, and Tyrranidae) that do not
typically winter in Maine or elsewhere in New England or New York. I then
excluded species that were not observed during at least 25. years in the
study period (78%), resulting in 29 species (Appendix Table 1). I classified
these species as either mid-distance migrants (n = 9; Appendix Table 1) or

long-distance migrants (n = 20; Appendix Table 1). Mid-distance migrants
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included species known to winter south of Maine and primarily north of
Florida. Long-distance migrants included species known to winter
primarily south of Florida, including the Caribbean, Central America, and
South America (Alerstam and Christie 1993). For these species arrival
dates from eBird were converted into a Julian day format before
calculating mean spring arrival date and median spring arrival date. For
example, April 1 was converted to day 101 or 102 if it occurred in a leap

year.

I calculated the mean spring passage date (MNSP) and median spring
passage date (MDSP) using the Julian eBird bird observation dates for each
spring. The MNSP was calculated by averaging the Julian date of all spring
observations of a given species from March 1 through May 31 in a given
year. The MDSP was calculated as the median Julian date of all spring
observations of a given species from March 1 through May 31 in a given
year. Ultimately, I chose to use MDSP as the response variable for data
analysis based on previous research that demonstrated clear relationships
between MDSP and NAO in European passerine populations (Hippop and
Happop 2003, Marra et al. 2005). Median arrival dates of spring migrants
may be more representative than mean arrival date because they minimize
the effect of first arrival date and demographic bias, which can bias
phenology assessments using first arrival and mean arrival dates (Usui et

al. 2017).
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For covariates I used year as an indicator of large-scale trends, NAO and
ENSO as intermediate-scale metrics, and 19 other regional weather and
climate indices were evaluated for use as measures of small-scale trends.
The NAO and ENSO index values used were normalized based on a rotated
principal component analysis conducted by NOAA (Hurrell 1995). NAO
and ENSO data included data from the year preceding the corresponding
migration season; for example, for the 2014 spring migration season, the

NAO and ENSO data included the 12 months prior to April 2014.

For small-scale predictor variables, I evaluated 19 datasets pre-
summarized by NOAA for the Northeast U.S. (including Delaware and
Pennsylvania and all other northeastern states north to Maine). NOAA data
included extreme minimum and maximum temperatures, drought indices,
and similar metrics and datasets included data from March through May
for each year (Table 2). I used temperature data obtained from the NOAA
Gardiner station in central Maine, because data from this station were
selected because it was isolated from the effects of Maine’s coast and
inland mountains. The station was presumably the most representative of

the temperature trends of the state as a whole.

In total the initial model included 21 regional weather and climate indices

for my analysis of spring migration phenology (Table 2).
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2.2.2 Data Analysis

Predictor Variable Selection

In preparation for model building, model selection, and model averaging,
I evaluated the relationship and collinearity among the 21 candidate
predictor variables (Table 2). Predictor variables were expected to be
highly correlated with each other, e.g., the Climate Extremes Index is a
composite measure of precipitation trends and temperature extremes,
and thus it was likely to be correlated to those component variables. To
avoid collinearity and to retain as much independence in predictor
variables as possible, I evaluated correlation and collinearity among the
21 original predictor variables in R 2.3.4 using the Hmisc package (Harrell
2015). I used Hmisc to calculate the variance inflation factor (VIF) for a
Durbin Watson Test for the 21 predictor variables (O'Brien 2007) (Table

3).

Results of the correlation, collinearity assessment, and Durbin Watson
Test reduced the number of predictor variables to a final subset of
predictor variables that had the least correlation to other variables (Table
2). The criteria for retaining a predictor variable was VIF < 10 and no
statistically significant correlation with any other predictor variable. The
11 predictor variables retained for further analysis were the NOAA climate
extremes index (spring only), NAO, ENSO, extreme maximum

temperatures above normal for the Northeast region in spring, extreme
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minimum temperatures above normal for the Northeast region in spring,
extreme minimum temperatures below normal for the Northeast region in
spring, wet/dry conditions less even for the Northeast region in spring,
wet/dry conditions more even for the Northeast region in spring,
abnormally infrequent precipitation for the Northeast region, and
abnormally frequent precipitation for the Northeast region (Table 3). In an
effort to reduce covariance between these similar indices, I chose a
combination of the two extreme temperature and wet/dry indices by
calculating the difference of the extreme maximum and extreme minimum
temperatures and precipitation indices, thereby reducing the total number
of independent variables used in the model to 7 (Table 2). The
independent variables used in the model included: year, ENSO, NAO, the
Palmer Drought Severity Index for the Northeast monthly average per
spring (PDSI), the difference between extreme maximum temperature
above normal and extreme maximum temperatures below normal for the
Northeast per spring of each year (Extreme Above Normal Temp), the
difference between extreme maximum below normal temperature and
extreme minimum below normal temperature for the Northeast per spring
of each year (Extreme Below Normal Temp), and the number of extreme
one day above normal precipitation events for the Northeast per spring of

each year (Extreme Precipitation).
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Table 2. Variance inflation factor amongst predictor variables.
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Table 3. Description of predictor variables.

Type flime Region Category Description

Variable Summary Period

“The CEI (Climate Extremes Index) is described by NOAA as an
aggrepate set of convectional climate extreme indicators and is the

e e e Composite North Composite arithmetic average of the 5 other CLI indices. A value of 0%
Index Per Year (Jan. + Annual Measure of oo 6
Dec.) Index Eastern U.S. Regional Extremes indicates no portion of the year was subject to extremes of temp or
6l precipitation, a value of 100% indicates that the entire year was
subject to extremes of temp and Precipitation, o
Climate Extremes N Composlte
Index Per Spring ﬁ](:jrggosue Spring E‘:srr[ehrn us. Mcasure of As above but for spring only.
(Mar. - May) - Regional Extremes
Index of
- : Index of North Atlantic Oscillation - Fositive value canses warmer
NAD Index :‘l:d"‘:,’:m": Annual m‘:::l\lti: :.k""wh"'""l and Increased rainfall in NE, Negative valie causies
b conler and drier winters in NE
Frends
oot — el Inales of Southern Oseiilatian (11 Nio/La NI during winter
ENSO Indek Winter | Climatologheal 1] # spring of given yeor), Positive values capse warmer and
¥ e drier than average winters in NIL
" “The Palmer Drought Severity Index (PDSI) is derived from
Palmer Drought Composite Monthly Index of Drought P ] i
A Northeast B temperature and precipitation to estimate relative dryness, It
Severity Index Index (per year) Conditions ranges from -10 (dry) to + 10 (wet),
Extreme Maximum
‘Temperatures Index based on Annual North Warm Periods The sum of the percentage of the NE states with maximum
chove Normal Per observations Castern U.S, Abnormally Warm temperatures above normal for the entire year
ear
Extreme Maximum
. The sum of the percentage of the NL states with maximum
Temperatures Index based on N North Warm Periods ’ . o
Above Normal Per observations Spring Eastern U.S. Abnormally Warm temperatures above normal for the spring (March - May) of a given
spring year
Extreme;Maximur Index based on North Warm Perlods ‘The sum of the pereentage of the NE states with maximum
Temperatures Below bservati Annual N P L .
Normal observations Eastern U.S. Abnormally Cool temperatures below normal for the entire year
Extreme Maximum ; “The sum of the percentage of the NE states with maximum
Index based on North Warm Periods
Temperatures Below p— Spring N temperatures below normal for the spring (March - May) of a glven
Normal Per Spring observations Eastern U.S. Abnormally Cool year
Extreme Minimum
Temperatures Index based on Annual North Cool Period The sum of the percentage of the NE states with minimum
Above Normal Per observatlons tastern U.S, Abnormally warm temperatures above normal for the entire year
Year
Extreme Minimum a : " -
Temperatures Index based on Spri North Cool Period [lhe sumnt;f [heg]el:cenrage lnff th‘eth‘: sl_ares;lvuhtmlr&mumf N
Above Normal Per abservatlons pring Eastern 1.8, Abnormally Warm emperatures abave narmal for the spring (Marc ay) of a given
Spring year
%:ﬂen;mm;enw Index based on Annual North Cool Periods The sum of the percentage of the NL states with minimum
Noreal Por Year observatlons Eastern U.S, Abnormally Cool temperatures below normal for the entire year
Extreme Minimum “The sum of the percentage of the NE states with minimum
Index based on : North Cool Perlods B .
Temperatures Below . Spring N temperatures below normal for the spring (March - May) of a given
Normal Per Spring observatlons Eastern U.S, Abnormally Cool year
Lweils/Echio:lgle?:: Index based on Annual North g(?r‘l{ili)rxizns Less The sum of NE states PDSI severe drought (i.c. the lowest tenth
Per Year observations Eastern U.S, Even in Region percentlle) with above normal moisture surplus (for the entlre year)
Wet/Dry Conditions Index based on North Wet/Dry r'he sum of severe drought (i.e., the lowest tenth percentile) with
Mare Even in Region observations Annual Eastern U.S. Conditlons More below normal moisture surplus {for the entlre )
Per Year ) - Lven in Reglan " e © entlre year
Wet, Conditions Dry Periods with o : i
Lesslgxn in Region Lr;)d:éxwl;zasggson Spring E:sr[rehm Us Al?(’)\'e N(:)r;lal The sul;l"nl (;f b::‘hSt:m? PDSI sclvcrc _d]t'gughr (1,|c. H:F lowest rc’mh
Per Spring S Ss Moisture percentile) with above normal moisture surplus (for spring
Wet/Dry andltlo}ls Index based on N North Dry Perlods With The sum of severe drought (i.c,, the lowest tenth percentile) with
Mare Even in Region observations Spring Lastern U.S. Below Normal bel: | moisture surplus (£ ¥
Per Spring astern U.S. Moisture elow normal moisture surplus (for spring)
Abnormally Abnormally
Frequent ]()I;st:);\'l;atf::son Annual g:;[[:m Us. Frequent Sum of extreme one day precipitatlon events above normal per ycar
Preclpitation = Precipitation
Abnormally Index based on North /}bnormally Sum of extremc one day precipitation cvents above normal per
Frequent abscrvations Spring Lastern U.S Kicquent spring
Precipitation =2 Precipitation
Abnormally : . Abnormally
Infrequent !nhwrv.::f::\m Annual ﬁu“::_“ us, Infrequent Sum of exireme one day precipiiation events below normal per year
_Precipitation s sl Precipitation A —e
Abnarmally Index baded on North Abnormally Sum af extremy one day precipitation events belmy normal per
Infiequant observations Spring Eastern LS. Inftequient sprir
— Preciphation e Precipitation pring
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I then used the 10 predictor variables and year to model MDSP in three
discrete ways: simple linear regression, linear mixed-model, and model

averaging.

Simple Linear and Multivariate Regression

The eBird data set was used to generate the MDSP for each species,
resulting in 29 median arrival dates. To model each species’ median arrival
date, I first evaluated year as an overall effect on arrival date of each

species:

Arrival = g,+ B, Year+€

Each species’ coefficient of Year (8;) is a measure of that species’ spring
migration phenology trending earlier or later. Simple linear regressions of

each species’ arrival MDSP and year were modeled separately.

The individual species model described above estimates the effect of year
on MDSP for each species but it can be considered as an estimate for a
more general effect common to all species. I used the same regression
model for the multivariate regression approach, but instead of generating
29 different simple linear regression models, i.e., one for each species, I
used all 29 species at once to generate a multivariate regression. Then, I

generated regression plots and used locally weighted scatterplot
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smoothing to visually depict the trend in the multivariate regression.
Locally weighted scatterplots are used to fit scattered or noisy data to a
line of best fit; it is a non-parametric approach that does not assume the
data fit a pre-determined distribution and helps to show trends in

continuous data sets (Cleveland 1979).

One drawback of the regression models is that errors are not independent
because the dataset includes multiple species, not all of which have the
same migratory behavior patterns. For example, species known to arrive
earlier on average than all other species have a predictably negative error
in all years; thus, all earlier arriving birds will have correlated errors.

Correlated errors would indicate a lack of independence across variables.

Linear Mixed-Model

In addition to simple linear regression and multivariate regression, I
developed a linear mixed-model of median spring arrival times. This linear
mixed-model includes fixed and boot-strapped random effects. The model
uses species’ slopes (8,) and intercepts (3,) as the fixed effect, and the
random effect is a random sampling of a distribution with a mean of 0

and some variance to generate the random slope (4,) and intercept (8,).

Arrival; = (Bo+ Bo;) + (B: + By)Year+e

The random intercept (8,) is such that some species may have a negative

intercept, and some have a positive intercept; thus, they arrive earlier or
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later than other species. The random slope (6;;) is also derived from a
sampling of a population with mean of 0 and some variance, resulting in
some species demonstrating a larger or smaller effect on MDSP from year.
The linear mixed-model is a partial pooling among the individual species’
models, whereas the multivariate regression model computes slope and

intercept separately for each species.

Model Averaging

The model selection and model averaging approach is a fundamentally
different approach to the scientific process than hypothesis testing, and
it is well suited to describing complex ecological systems (Burnham and
Anderson 2003). The model selection approach is based on the concept of
multiple working hypothesis (Johnson and Omland 2004). Model selection
allows inferences to be made about a given system or subject that are not
mutually exclusive and therefore often present a more comprehensive
description of a given system or subject without the constraints of
hypothesis testing in the traditional sense. I used model averaging to
develop a model of median spring arrival dates. This approach allowed me
to incorporate multiple model parameters that affected the response
variable. Traditional statistical approaches rely on a single model, for
example regression analysis, whereas model averaging includes the
results of multiple plausible models to develop a single comprehensive

model. Model averaging can result in a reduction of model selection bias
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and can compensate for model selection uncertainty (Johnson and

Omland 2004, Burnham and Anderson 2004).

After developing the simple linear regression, multivariate regression, and
linear mixed-model, I included 3 other covariates (NAO, OS], and the
climate extremes indices) into a model of MDSP. I developed multivariate
linear mixed models using year, NAO, OS], and climate extremes indices,
but because of lack of true independence among the variables, this
approach had limitations in the ability to accurately model MDSP without

substantial error. The model used for model averaging was:

Arrival = B, + B, Year+p, NAO+p, ENSO+, PDSI+g, Extreme Above Normal
Temperature+p, Extreme Below Normal Temperature +f, Extreme

Precip+e

I then generated an average model using all 7 covariates and calculated
weighted averages for each of the coefficients of variation in the models.
I used the dredge function in MuMIn package in R to fit the set of sub-
models containing all combinations of the predictor variables (Leonard et
al. 2014). I then used the model average function to construct a single
“best” model with model-averaged coefficients averaged over the entire

set of submodels (Kang et al. 2003).
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2.3 Results

Climate

Mean monthly temperature for spring (March - May) trended higher from
1982 to 2014; however, this trend was not statistically significant (R? =
0.001, Adj. R* = -0.03, p = 0.867). NAO had a statistically significant
relationship with the NOAA Climate Extreme Index (R? = 0.305, Adj. R? =
0.2792, p = 0.001), extreme maximum above average spring temperatures
in the Northeast (R? = 0.3566, Adj. R? = 0.3327, p = 0.0006), and other
climate indices included in the global model. The full regression matrix of

predictor variables is available in Appendix Table 2.

Simple Linear Regression

Median arrival dates for each species varied by year, but the general trend
was toward increasingly earlier arrival dates for all species during the
study period (1982 - 2014) (Figure 3, Appendix). Of the 29 species
included, 26 exhibited gradually earlier arrival dates from 1982 to 2014,
and only three species (blue-headed vireo [Vieo solitarius], eastern phoebe
[Sayornis phoebel, and yellow-bellied flycatcher [Empidonax flavientris])
exhibited stable or later arrival dates for the same period. The trend in
earlier median arrival dates for most species was not statistically
significant (p > 0.05). However, song sparow (Melospiza melodia) (Adj.

R*=0.252, p = 0.003) and American redstart (Setophaga ruticilla) (Adj.

R*=0.127, p = 0.033) exhibited statistically significantly earlier median
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arrival dates (MDSP). For all species pooled, the trend was similar to that
observed for individual species, with a negative relationship between

median arrival data and year (Figure 9).

Different environmental predictors related to different species’ MDSP
patterns. Although species varied substantially, the largest mean
coefficient value in the species-specific average model, among all species,
was the Climate Extremes Index. For 1 unit change in the Climate Extremes
Index (Appendix Table 2) median spring arrival dates changed across all

species on average -0.23 days (SD = 0.31, SE = 0.06).

Species MDSP responded differently to the predictor variables. For
example, only six species exhibited an earlier median arrival date in
response to an increase in the Climate Extremes Index when all other
predictor variables were fixed (blackpoll warbler [Setophaga striatal,
black-throated blue warbler [Setophahga caerulescens], black-throated
green warbler [Setophahga virens|, chimney swift [Chaetura pelagical,
Eastern kingbird [Tyrannus tyrannus] and Eastern phoebe [Sayornis
phoebe)). For the “Cool Periods with Abnormally Cool Weather” index,
most species (n = 21) exhibited a later average median arrival date.
Conversely, most species (n = 21) had a corresponding earlier median

arrival date response to “Warm Periods Abnormally Warm”.
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The goodness of fit for species-specific average models was also variable.
All average models for each species had R? > 0.16, with a maximum of
0.64. The maximum R?for long-distance and middle-distance migratory
species was 0.47 (black-throated green warbler) and 0.64 (brown thrasher
[Toxostoma rufum]). Overall, the species-specific average models had a
higher average R? across all models for middle-distance migratory species

(R?*= 0.394) than for long-distance migratory species (R>=0.311).

Multivariate Regression

As described above, the MDSP of each species was modeled against year,
resulting in 29 different regression models (Appendix Figures 1-29). When
combined into the multivariate model using the coefficient for year for
each species’ model, the mean trend in arrival time over the 32 year period
is a-0.19 change in MDSP per year, or -6 days over the 32-year period; 90%
of bird species trended earlier during this period (Figure 5). However,
these data are not independent because some species trend earlier than

others.

The multivariate regression using all species and year as the independent
variable demonstrates that there is a clear trend in MDSP across species
from 1982-2014. The slope of the median arrival date across all species
was estimated to be -0.123 (SE =0.028, p <0.05). However, there is a caveat
to the estimated standard error and P-value, because there was a lack of

independence of error in the dataset. For example, some species naturally
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migrate earlier than others, and thus the species’ MDSP are not
independent when pooled. A corrective factor to adjust for individual
species’ migration behavior could alleviate this lack of independence in

future analyses.

The multivariate regression can be used to explore the eBird dataset more
thoroughly (Figure 6). The MDSP data for each species was plotted in a
simple linear regression of the MDSP against year for each species (Figure
7). The simple linear regression of MDSP and year for each species was
then smoothed using locally weighted scatterplots smoothing, to

demonstrate the trend in MDSP across all species (Figure 8).

Raw data have too much noise to be particularly useful or indicative of
trends in the dataset across species (Figure 6). Simple linear regression is
an overly simple view of MDSP trends for most species (Figure 7). Locally-
weighted smoothing shows a more nuanced and complex trend in MDSP

with a consistent pattern in earlier arrival dates (Figure 8 and 9).

Linear Mixed-Model

One challenge with the multivariate model is a lack of standard error
because of the lack of independence between dependent variables. In the
linear mixed-model, I combined fixed and random effects, resulting in a
more appropriate and accurate estimate of standard error. By

standardizing the residuals, I arrived at an estimate of the slope (-0.189)
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of median arrival date as a function of year (SE = 0.037). Put another way,
based on the linear mixed-model, I estimated that median arrival dates are

advancing by 0.189 days per year across all species.

I then included NAO and ENSO in the mixed model along with year, which
resulted in an estimate of MDSP adjusted for NAO and ENSO. By including
NAO and ENSO in the model, the original estimated change in MDSP of -
0.189 days per year changed to -0.11 days per year. NAO and ENSO
account for some variation in MDSP across year, but when adjusted we
still see an advancement in migration of 0.11 days. ENSO had a positive
effect on MDSP (B = 1.736) and NAO had a strong negative effect on MDSP
(B=-3.547). The strong positive effect of ENSO is evident in MDSP trends
in the late 1990’s when the steady advancement of MDSP reversed for

approximately 6 years (Figure 8 and Figure 9).

Following the inclusion of NAO and ENSO in the linear mixed-model I
included the PDSI, Extreme Below Temperature, Extreme Above
Temperature, and Extreme Precipitation variables. The “extremes” model
had a slightly negative slope (-0.07) but deviated from the approximately

-0.19 coefficient observed in the other models.

Average Model

Model averaging allowed me to fit all possible models of MDSP and year,

NAO, ENSO and the 4 other predictor variables into a single model. The
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coefficient for year in the average model was -0.197, which corresponds
to a 0.197 day advance in MDSP per year when accounting for the 6 other
model covariates (Table 3). The year coefficient, of approximately -0.19, is
consistent with year coefficient generated in the simple regression, linear
mixed-model, and multiple regression models. Unlike the regression and
models, the average model minimized error among all possible model

combinations by averaging the coefficient for each parameter.
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Table 4. The average model of MDSP and 6 covariates.

Covariate Coefficient Standard Error p-Value
NAO -0.987 0.573 < 0.001
Year -0.197 0.042 < 0.001
PDSI -0.088 0.178 <0.001
Extreme Below -0.047 0.024 0.053
Normal
Temperature
Extreme Precip -0.037 0.019 0.057
Extreme Above 0.024 0.021 0.26
Normal
Temperature
ENSO 0.0576 0.196 0.77

Table 5. Coefficient for year in each model approach.

Modelling Method Coefficient for year on
MDSP
Simple Linear Regression -0.19
Multivariate -0.123
Linear-mixed model (not adjusted for -0.189

NAO and ENSO)

Linear-mixed model (adjusted for NAO
and ENSO)

Linear-mixed model (adjusted for NAO,
ENSO, PDSI, Extreme Below
Temperature, Extreme Above -0.07
Temperature, and Extreme Precipitation

variables)

Model averaging -0.197

-0.11
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Figure 2. Frequency of median arrival dates and year, for 29 species, March -
May 1982-2014 Maine.
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Figure 3. Distribution of coefficient of correlation of median arrival dates and
year, for 29 species, March - May 1982-2014 Maine.
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Figure 4. Plot of extreme minimum and extreme maximum temperatures for
the spring period (March - May) in the northeast from NOAA. These variables
exhibited collinearity. Blue line is the regression of the Extreme Minimum
Spring Temperature Index against Extreme Maximum Spring Temperature.
The grey area is the 95% confidence interval for the regression.
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Figure 5. The change in median arrival date (MDSP) for 29 species, March -
May 1982-2014 Maine.
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Figure 6. Julian date MDSP by year for 29 species, March - May 1982-2014
Maine. There is substantial variation by species and across years.
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Figure 7. Simple linear regression for each bird species’ Julian median arrival
date by year, for 29 species, March - May 1982-2014 Maine. The declining
trend in median spring arrival date is apparent in most species, and consistent
across species. The variation among years is masked with the simple linear

regression.
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Figure 8. Species’ median spring arrival date (MDSP) by year for 29 species,
March - May 1982-2014 Maine. The trend is similar to Figure 7 and 8, but with
the locally weighted scatterplots smoothing applied more of the variation
across years is apparent. Despite the declining trend in MDSP shown in the
simple linear regression, MDSP variation was not as uniform from year to
year as the simple linear regression model shows.
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Figure 9. MDSP data, by year, from all species combined, using a multivariate
regression model with locally-weighted smoothing, for 29 species, March -
May 1982-2014 Maine. The gray shaded area is the SE. As with the species-
specific Figures 7 and 8, this shows a clear advancement in MDSP (i.e., earlier
MDSP) across the years, although there is a reversion back to later MDSP dates
in the late 1990’s this is then followed by earlier MDSP through 2014.

60



(e
'

Number of Species

4‘ J
| I | ﬁ I | I
0=

8

-20 -in
Total Change (days)

Figure 10. Histogram of the count of species and the estimated total change
in the median spring arrival date in a linear mixed-model adjusted for NAO

and ENSO.
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CHAPTER 3 - DISCUSSION

3.1 The Observed Trend

Human induced climate change’s effect on migration phenology is most
evident at large temporal scales, such as across multiple decades, as
observed in the literature and my own data analysis. Although there is
variability in migratory activity on small temporal scales (i.e., hour to hour
and day to day), this variation is masked by variation in patterns of
migration at greater temporal scales (i.e., week to week, month to month,
and year to year). Migration variation is partially a function of broader
climatic trends, behavioral responses to environmental conditions, and

stochastic factors (Able 1973).

Increasing mean annual temperatures measurably affected arrival times
of 26 of the 29 species of spring migrants studied in Maine (Chapter 2),
and long term observational datasets more fully elucidate such trends at
regional and national scales (Wood et al. 2011). The three species, blue-
headed vireo, eastern phoebe, and yellow-bellied flycatcher exhibited
stable or later arrival dates for the same period. These three species are
insectivores and sally for insects from a perch, although blue-headed vireo
may occasionally eat fruits. It is possible that this reliance on insects,
especially flying insects, may affect the plasticity of their migration
phenology. These species may have less flexibility in adjusting their

migration because of their reliance on a seasonally abundant food
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resource and a specific foraging method. Although, other factors
including underrepresentation in the dataset caused by observation bias
in the case of the yellow-bellied flycatcher, which is more difficult to

identify and observe than many of the other species evaluated.

Changes in spring arrival dates can be linked directly to anthropogenic
climate change when accounting for NAO and other abiotic variables
(Laaksonen and Lehikoinen 2013, Usui et al. 2017). However, some studies
do not reveal clear causal factors and are confounded by constraints on
behavioral plasticity and demographics (Marra et al. 2005, Wilson 2007

Miller-Rushing et al. 2008).

In my quantitative data exploration, I found variation in the effect of year
on median spring arrival dates, but in general I demonstrated an
approximately -0.18-day change in median arrival date per year across all

species during the study period.

The different modeling methods employed in my data exploration yielded
slightly different results, which reflect variability also observed in the
literature. Simple linear regression models for each individual species
demonstrated a clear trend toward earlier MDSP over time among most
species. Ward et al. (2016) demonstrated a similar average response,

among all species studied of -0.12 days per year also using a simple-linear
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regression approach. The multivariate model resulted in a -0.19 change in
MDSP per year during the study period. This model did not account for
differences in individual species’ migration strategy and phenology (e.g.,
some species arrive earlier than other species each year), which, for
example, Laakosonen and Lehikonen’s 2013 paper did account for, but
Bradley et al.’s 1999 work did not. It’s possible that by accounting for
variation in relative migration behavior across species (e.g., accounting for
earlier and later migrating species ) I may have had different results;
however, variation in MDSP was so consistent for 26 of the 29

species, it’s probable that even if I accounted for the species specific

migration behavior I would have observed the same trend in MDSP.

Results of the linear mixed-model were not substantially dissimilar to the
multivariate and simple linear regression models and documented a
change in median arrival date of approximately -0.19 days per year across
all species. In the linear mixed-model, I combined fixed and random
effects similar to Miller-Rushing et al.’s (2008) study, resulting in a more
accurate standard error. When I accounted for confounding variables such
as NAO and ENSO, I ended up with a reduced estimate of change in annual
arrival date of -0.11 days per year. Many studies in Usui et al.’s (2017)
meta-analysis accounted for these same confounding factors. When I
included other variables, such as temperature and precipitation, the

estimate of annual change in MDSP reverted back to the estimate observed
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in the simple linear regression models, approximately -0.18 days per year.
The average model resulted in a similar coefficient for year, of -0.197 days
per year (or -1.97 days per decade) during the study period, which
demonstrates that NAO and ENSO may have a larger effect on MDSP than
other weather variables, but that year is still the driving force behind the
observed advancement in MDSP. The observed advancement in MDSP is
consistent with Usui et al. (2017) who concluded in their multi-century
meta-analysis that on average most migratory species have advanced
spring migration by 2.1 days per decade. Both my data analysis and Usui
et al. (2017) demonstrate that advancements in migration phenology is

driven by year, which is a manifestation of climate change.

The trend of declining MDSP is evidence of the large-scale effect of global
climate change driving median arrival date across years and decades. The
variation observed across years in the late 1990s where the trend in MDSP
changes from negative to positive for a period of approximately 8 years
may be a result of variation in small-scale weather conditions or more
likely in intermediate-scale phenomenon of ENSO and NAO. For example

ENSO was particularly strong in 1998.

3.2 Implications of the Trend

Each year migrants experience effects of a changing climate at wintering
grounds, during migration, and upon arrival at breeding grounds. As

clearly demonstrated, climate and weather conditions vary on local,
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regional, and global scales (Meentemeyer 1989) and may change hourly,
daily, or at much longer temporal intervals (Emanuel et al. 1985).
Numerous studies support advancement of spring migration phenology
as a result of human induced climate change, although the magnitude of
different species’ response to climate change varies based on their
migration strategy, foraging behavior, and other life history traits (Usui et

al. 2017).

Effects of climate change on the phenology of spring migration have been
observed on 5 continents (Morris et al. 1994, Hurrell 1995, Morris et al.
2003, Wood et al. 2011, Usui et al. 2017). These changes in arrival times
have implications for individual survival and population viability, because
arrival times are often associated with changes in reproductive success
(Saino et al. 2010). Declines in populations of long-distance migratory
birds in the northern boreal forests of Finland have been linked to climate
change (Laakosonen and Lehikonen 2013). Late arrivals are less
competitive at finding mates, and they may have arrived at a time when
typically, seasonally abundant food resources are not at peak availability
(Laakosonen and Lehikonen 2013). The consequences of changes in spring
migration phenology on fitness are poorly understood because of complex
demographic factors (e.g., recruitment and emigration) that confound
attempts to link changes in phenology and population declines (Hurrell

1995, Wood et al. 2011).
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Laakosonen and Lehikonen (2013) studied population growth trends of 94
boreal bird species in multiple habitats in Finland to determine effects of
climate change and corresponding changes in habitat on species of
conservation concern. The researchers collected data from 1986 - 2012
using traditional point count observational methods during the spring
breeding period (May 20 - June 20). Laakosonen and Lehikonen divided
the species into seven migratory classes and compared them across eight
habitat types. The researchers then developed general linear models of
population size and growth, with habitat and migratory strategy as
covariates. They concluded that long-distance migrants and species with
northern distributions had the lowest population growth. They attributed
the lower rate of population growth to long-distance migrants becoming
out of sync with the phenology of seasonally abundant food resources at
breeding grounds (Laakosonen and Lehikonen 2013). These observed
reductions in population growth rates of long-distance migrants may be a
consequence of the observed advancement in arrival dates for long-
distance migrants arriving and breeding in Maine. I observed earlier arrival

dates for 90% of the long and middle distance migrants.

There are likely to be severe consequences from earlier migration if birds
arrive on spring breeding grounds too early or too late relative to peak
food resource availability (Usui et al., 2017, Laakosonen and Lehikonen
2013). For example, the timing of leaf out, a major ecological event in

temperate forest ecosystems, coincides with an increase in availability of
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invertebrate prey species. If migrants time their arrival with leaf out
incorrectly, population growth rates may be reduced. Birds that feed
invertebrate prey to their young may experience strong selective pressure

to track changes in the timing of leaf out.

Other research has explored biological constraints on migrafory behavior,
which can result in birds becoming maladapted to a rapidly changing
climate. Timing of spring arrival and physical condition of birds when they
arrive on the breeding grounds are important determinants of
reproductive success and fitness. Pied flycatchers (Ficedula hypoleuca) can
adapt migration and breeding to climate and weather conditions, but this
adaptation can be masked by physical migratory constraints (Both 2010).
Both explains that although migrants have been repeatedly observed
arriving earlier to breeding grounds, earlier arrival dates do not
necessarily correspond to individuals breeding earlier (Both 2010). Both
observed strong evidence of earlier migration departure dates, but earlier
departure dates were not strongly related to earlier afrival dates at
breeding grounds, which was attributed to the confounding factors of
environmental constraints encountered during migration (Both 2010).
Earlier arrival dates seem to occur but are not always associated with
earlier departure dates, suggesting that the complexities of migration en
route, and not just at departure or arrival, can be a confounding factor in
our understanding of climates’ effect on passerine migration. This

conclusion is similar to Hiippop and Hiippop’s research (2003), which
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suggests that adaptation to climate change is primarily a manifestation of
phenotypic plasticity and not necessarily evidence of emerging changes in
genotypes as expected if selection were occurring (Charmantier and
Gienapp 2014). As climate change intensifies (Delworth et al. 2016), new
research may explain the relationship between changing weather patterns,

migratory behavior, and breeding success.

Effects of climate change on the phenology of spring migration will
continue to be observed throughout the Northern Hemisphere, and given
the potential for changes in selective pressure on earlier migrants, greater
plasticity in migratory behavior may manifest. Selective pressures due to
climate change also may occur on a rapid time-scale, consistent with the
pace of climate change, and some bird populations may not be successful

in fully adapting to the changing climate.
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Appendix A. Table 1.

Mid-Distance Migrants

Common Name

Brown Thrasher

Eastern Towhee

Hermit Thrush

Northern Flicker

Palm Warbler

Song Sparrow

Swamp Sparrow

White-throated Sparrow

Yellow-rumped Warbler

Long-Distance Migrants

Common Name

Alder Flycatcher

American Redstart

Black-and-white Warbler

Blackburnian Warbler

Blackpoll Warbler

80

Species Name

Toxostoma rufum

Pipilo erythrophthalmus

Catharus guttatus

Colaptes auratus

Setophaga palmarum

Melospiza melodia

Melospiza georgiana

Zonotrichia albicollis

Setophaga coronata

Species Name

Empidonax alnorum

Setophaga ruticilla

Mpniotilta varia

Setophaga fusca

Setophaga striata



Black-throated Blue Warbler

Black-throated Green Warbler

Blue-headed Vireo

Chimney Swift

Cliff Swallow

Eastern Kingbird

Eastern Phoebe

Least Flycatcher

Magnolia Warbler

Nashville Warbler

Northern Parula

Ovenbird

Ruby-throated Hummingbird

Scarlet Tanager

Yellow-bellied Flycatcher

Setophaga caerulescens

Setophaga virens

Vireo solitarius

Chaetura pelagica

Petrochelidon pyrrhonota

Tyrannus tyrannus

Sayornis phoebe

Empidonax minimus

Setophaga magnolia

Oreothylpis ruficapilla

Setophaga americana

Seiurus aurocapilla

Archilochus colubris

Piranga olivacea

Empidonax flaviventris



Appendix A. Table 2.

Climate Wet/D Wet/D.
Extreme Extreme Extreme Extreme /. i / N
Extreme Norther . . . Conditio Conditio
Pacific Abnormally Abnormally
s Index n n ns Less ns More
. . climat Te Ti Te ¢ . Frequent Infrequent
Variable Per Atlantic Evenin Evenin e R
L es Above es Below es Above es Below N N Precipitatio Precipitatio
Spring climate N Region Region N N
(Mar. Index index Normal Per Normal Per Normal Per Normal Per Per Per n-Spring n-Spring
May) Spring Spring Spring Spring Spring Spring

Climate
Extremes
Index Per 1.000 0.088 0.116 0.089 -0,229 0424 -0.043 -0.069 0.097 -0.114 -0.544

Spring {Mar.
- May)

Northern
Atlantlc
climate

index

0.088 1.000 0.981 -0,247 0,053 0.200 -0,003 0.460 0.328 0.086 -0.076

Paclfic
climate 0.116 0.981 1.000 -0.232 0,022 0.227 -0.017 0.437 0.353 0.083 -0.082
index

Extreme
Maximum
Temperatur
es Above
Normal Per
Spring

0.089 -0.247 -0,232 1.000 -0.038 0.108 0,143 0.015 -0,181 -0.164 -0.132

Extreme
Maximum
Temperatur
es Below
Normal Per
Spring

-0.229 0053 0.022 -0.038 1.000 -0.091 0,603 -0.108 -0.170 -0.210 -0.212

Extreme
Minimum
Temperatur
es Above
Normal Per
Spring

0.424 0.200 0.227 0.108 -0.091 1.000 -0.027 0.031 -0,171 -0.239 -0.213

Extreme
Minimum
Temperatur
es Below
Narmal Per
Spring

-0.049 -0.003 -0.017 0.149 0.603 -0.027 1,000 0.146 -0.315 -0.354 -0.105

Wet/Dry
Conditions
Less Even in -0.069 0460 0.437 0.015 -0.109 0.031 0.146 1.000 -0.189 -0.333 0.013
Region Per

Spring

Wet/Dry
Conditions
More Even 0.097 0.328 0.353 -0.181 -0.170 -0.171 -0.315 -0.189 1,000 0515 -0.008

In Region

Per Spring

Abnormally
Frequent
Precipltatio
n-Spring

-0.114 0.086 0.083 -0.164 -0.210 -0.238 -0.354 -0,333 0.515 1.000 0377

Abnormally

infrequent

Precipltatio
n-Spring

-0.544 -0.076 -0.082 -0.132 -0.212 -0.213 -0.105 0.013 -0.008 0377 1.000
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Appendix Figure 1. Alder Flycatcher median arrival dates by year 1979 -

2014
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Appendix Figure 2. American Redstart median arrival dates by year 1979

- 2014
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Appendix Figure 3. Black and White Warbler median arrival dates by year

1979 - 2014
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Appendix Figure 4. Blackpoll Warbler median arrival dates by year 1979 -

2014
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Appendix Figure 5. Blackburnian Warbler median arrival dates by year

1979 - 2014
170 BLUE-HEADED VIREO
X
& 160
g X X X
= X
< = 150 X
= * X 2 Yo 0008
<Z( 32 140 — 2 4 W R ﬂ:m—;K
z X = S X X X
w 130 X
s X
X X
120
1979 1984 1989 1994 YEAR 1999 2004 2009 2014

Appendix Figure 6. Blue-Headed Vireo median arrival dates by year 1979

- 2014
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Appendix Figure 7. Brown Thrasher median arrival dates by year 1979 -

2014
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Appendix Figure 8. Blue-Throated Blue Warbler median arrival dates by

year 1979 - 2014
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Appendix Figure 9. Black-Throated Green Warbler median arrival dates by

year 1979 - 2014
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Appendix Figure 10. Chipping Sparrow median arrival dates by year 1979

- 2014
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Appendix Figure 11. Cliff Swallow median arrival dates by year 1979 -

2014
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Appendix Figure 12. Eastern Kingbird median arrival dates by year 1979

- 2014
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Appendix Figure 13. Eastern Phoebe median arrival dates by year 1979 -

2014
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Appendix Figure 14. Eastern Towhee median arrival dates by year 1979 -

2014
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Appendix Figure 15. Hermit Thrush median arrival dates by year 1979 -

2014
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Appendix Figure 16. Least Flycatcher median arrival dates by year 1979 -

2014

91



170 MAGNOLIA WARBLER

160
150

=TI R?E0.0601-
140

[
w
(=]

MEDIAN ARRIVAL DATE (JULIAN)
N
N
=)

1979 1984 1989 1994 YEAR 1999 2004 2009 2014

Appendix Figure 17. Magnolia Warbler median arrival dates by year 1979

-2014
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Appendix Figure 18. Northern Flicker median arrival dates by year 1979

- 2014
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Appendix Figure 19. Northern Parula median arrival dates by year 1979 -

2014
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Appendix Figure 20. Nashville Warbler median arrival dates by year 1979

- 2014

93



- OVENBIRD

160

150

. I
& oy 4 R?=0.05
140

130

MEDIAN ARRIVAL DATE (JULIAN)

120

1979 1984 1989 1994 YEAR 1999 2004 2009 2014

Appendix Figure 21. Ovenbird median arrival dates by year 1979 - 2014
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Appendix Figure 22. Palm Warbler median arrival dates by year 1979 -

2014
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Appendix Figure 23. Ruby-Throated Hummingbird median arrival dates

by year 1979 - 2014
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Appendix Figure 24. Scarlet Tanager median arrival dates by year 1979 -

2014
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Appendix Figure 25. Song Sparrow median arrival dates by year 1979 -

2014
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Appendix Figure 26. Swamp Sparrow median arrival dates by year 1979 -

2014
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Appendix Figure 27. White-Throated Sparrow median arrival dates by year

1979 - 2014
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Appendix Figure 28.Yellow-Bellied Flycatcher median arrival dates by year

1979 - 2014
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Appendix Figure 29. Yellow-Rumped Warbler median arrival dates by

year 1979 - 2014
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