Date

Spring 4-2015

Document Type

Poster Session

Department

Mathematics and Statistics

Advisor

Laurie Woodman

Keywords

mathematics, Klein Bottle, Thinking Matters

Abstract

A Klein Bottle is a two-dimensional manifold in mathematics that, despite appearing like an ordinary bottle, is actually completely closed and completely open at the same time. The Klein Bottle, which can be represented in three dimensions with self-intersection, is a four dimensional object with no intersection of material. In this presentation we illustrate some topological properties of the Klein Bottle, use the Möbius Strip to help demonstrate the construction of the Klein Bottle, and use mathematical properties to show that the Klein Bottle intersection that appears in ℝ3 does not exist in ℝ4. Introduction: Topology

Start Date

April 2015

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.