

University of Southern Maine USM Digital Commons

Publications

Casco Bay Estuary Partnership (CBEP)

2003

Concentrations of Polycyclic Aromatic Hydrocarbons in Surficial Sediments of the Fore River and Portland Harbor, Maine: A Report to the National Resource Damage Trustees

Mike Doan Friends of Casco Bay

Follow this and additional works at: https://digitalcommons.usm.maine.edu/cbep-publications

Recommended Citation

Doan, M. (2003). Concentrations of Polycyclic Aromatic Hydrocarbons in Surficial Sediments of the Fore River and Portland Harbor, Maine: A Report to the National Resource Damage Trustees. Portland, ME: University of Southern Maine, Muskie School of Public Service, Casco Bay Estuary Partnership.

This Report is brought to you for free and open access by the Casco Bay Estuary Partnership (CBEP) at USM Digital Commons. It has been accepted for inclusion in Publications by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

Concentrations of Polycyclic Aromatic Hydrocarbons in Surficial Sediments of the Fore River and Portland Harbor, Maine

A Report to the Natural Resource Damage Trustees Agreement Number: 604195

> Presented by Mike Doan Friends of Casco Bay

> > March 2005

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a class of toxic organic pollutants, and represent the largest group of carcinogens listed by the Environmental Protection Agency (EPA). PAHs are ubiquitous at low concentrations and can occur naturally in the environment. Anthropogenic sources include storm water run-off and atmospheric deposition of compounds formed by the incomplete combustion of petroleum, oil, coal, and wood. In Portland Harbor, the largest oil port on the East Coast of the U.S., oil spills are also a source of PAHs. The EPA lists PAHs as priority pollutants. This class is very hydrophobic and therefore not very soluble in water. Once PAHs enter the marine environment, this low solubility allows them to adsorb to sediment and accumulate.

In 2004, a Natural Resource Damage Assessment grant was awarded to Friends of Casco Bay to establish a baseline for PAH concentrations in Portland Harbor and the Fore River, hereafter referred to as "the harbor." This task had two basic components: a literature search for existing data, and sediment collection and analysis of PAH concentrations from 20 sites located around the harbor.

Methods

Literature search

A literature search was conducted for historical PAH sediment data from around the harbor. There were two phases of the literature search. First, data was sought from known sources. Second, potential new sources of data were identified. Known reports and studies were identified and reviewed in meetings with representatives from the Casco Bay Estuary Project (CBEP), the Maine Department of Environmental Protection (DEP), and the EPA. Eight categories were used to group the various sources of historical data. See Table 1 for a list of these categories.

Source of Historical Sediment Data	Year
Doggett/Larsen	1980
Maine DEP	1989
Casco Bay Estuary Project	1991 / 1993
Maine DEP – Julie N spill Pre-assessment Report	1996
US Fish and Wildlife – Julie N spill Pre-assessment Report	1996
EPA National Coastal Assessment	2001 - 2002
Piers dredged through 1993 – Normandeau Associates	1950 - 1993
Piers dredged from 1994 to present -Portland Harbormaster	1994 - 2004

Table 1.

When a pier or wharf owner needs to dredge, they must conduct a sediment analysis. This analysis usually includes sediment PAH concentrations, potentially providing sources of data. Normandeau Associates provided PAH data from analyses completed prior to 1994 and the Portland Harbormaster provided FOCB with information on dredging permit applications by pier owners from 1994 to 2004. A list of pier dredging projects from 1994 to 2004 was compiled. Wharf owners were asked for data from their sediment analyses; letters requesting reports and data were sent and each owner was then contacted by telephone, but no data was acquired for this study.

Selection of 2004 sampling sites

Twenty sites in the harbor were selected for sampling in 2004, based on a review of historical stations, adjacent land use, and discussions with DEP, EPA, and CBEP. See Table 2 for a complete list of the 2004 sampling sites, and Figure 1 for a map with locations.

Table 2.		
Site Code	<u>Depth</u>	2004 Site Descriptions
	(feet)	
NRDA01	4	Upper Fore River, opposite mouth of Stroudwater River, heavily
		oiled during Julie N spill
NRDA02	4	Airport Cove, drainage from Jetport
NRDA03	5	Mouth of Long Creek, drainage from Maine Mall area through
		Clarks Pond, Red Bank
NRDA04	5	Thompson Point Cove, heavily oiled during <i>Julie N</i> spill, old
		industrial site
NRDA05	8	I-295 Cove, northeast corner, oiled during <i>Julie N</i> spill, many old
		industrial sites nearby
NRDA06	6	Global Oil flat, mouth of Barberry Creek, site of varied industrial
		uses over time, spills
NRDA07	15	Off South Portland <i>POTW</i> outfall, non-attainment area: violates
		aquatic life standards, Federal 303d list category 5A
NRDA08	20	Gasworks, China Clay docks, non-attainment area: violates
		aquatic life standards, Federal 303d list category 5A, VRAP at
		Gasworks
NRDA09	47	Mid-channel, Fore River, sampled for PAH in 1980, 1989, 1991,
		1996, and 2002
NRDA10	48	Vessel Services at the Fish Pier fueling dock
NRDA11	7	Widgery Wharf – west, lobsterman's dock, needs dredging
NRDA12	15	Widgery Wharf – east, lobsterman's dock, needs dredging
NRDA13	8	South Portland Shipyard, inner site
NRDA14	16	South Portland Shipyard, outer site
NRDA15	17	Casco Bay Ferry Terminal, just off large CSO at Commercial
		Street
NRDA16	12	Maine State Pier, east side (near Cianbro), just off large CSO
NRDA17	68	Former site of BIW dry dock, future Ocean Gate site
NRDA18	15	Near South Portland Boat Ramp, near old industrial site, tank
		farms, dredge area BB
NRDA19	8	Mill Cove, South Portland
NRDA20	8	Pleasantdale Cove, South Portland

Table 2.

Sample collection in 2004

Sediment sampling in the harbor was conducted during November 2004, under the Casco Bay Environmental Monitoring Plan, Assessment of Sediment Contamination in Casco Bay (Quality Assurance Project Plan RFA No. ME01223). At each station the boat was either anchored or secured to a pier or piling, and the GPS coordinates were recorded. During sample collection, the boat engine was turned off to prevent atmospheric contamination. A Young-modified Van Veen Grab sampler was used to collect samples. Prior to each deployment, the stainless steel grab and other sampling equipment were washed thoroughly with Alconox and rinsed with ambient seawater. Three replicate samples were collected at each station. The top two centimeters of sediment from each successful grab were removed with a stainless steel spoon and transferred to a labeled 120-milliliter glass jar. The jars were kept in a cooler at 4 degrees Celsius until delivery to the lab. At the end of each sampling day, the samples, accompanied by a chain of custody form, were delivered to Katahdin Analytical Services in Westbrook, Maine, for analysis.

Determination of PAHs

Katahdin Analytical Services analyzed the samples in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods, SW-846, U.S. EPA. Data was received from Katahdin reported as ppb (ug/kg) dry weight.

The raw data provided by Katahdin was separated into two categories: analytes with 2 or 3 rings and analytes with 4 or more rings. Those PAHs with only 2 or 3 rings are considered to be the lower molecular weight constituents, while those PAHs with 4 or more rings are the higher molecular weight class. For each site, the average of the three replicates was calculated and presented as the mean concentration. Total PAH was computed as the sum of the 17 individual analytes. Total concentrations were also computed for the low and high molecular weight classes as the sum of each respective group.

Results

Literature search

Compiling the historical data proved to be much more difficult than anticipated. The CBEP, state, and federal studies and project reports were generally available. However, in many cases the reports did not include the methods used or the actual data. And in spite of attempts to obtain data from the various pier dredging projects identified in cooperation with Normandeau Associates and the Portland Harbormaster very little information was able to be collected. The Army Corps of Engineers was contacted to inquire about facilitation of data collection. Ultimately it was determined that the historical dredge data would be incompatible, very difficult to gather, and represented conditions that no longer existed due to removal of the sediment, and therefore not useable for this project.

In addition to being unable to compile a substantial portion of the historical data, it became apparent that comparing what data we could obtain would be difficult due to dissimilarities in methods of sample collection, analysis, and reporting. For example, data was collected at varying sediment depths, by single samples or with replicates, or even by compositing of multiple grabs. Some results were reported as wet weight, while most others were reported as dry weight. Some results were surrogate corrected and some were not, and some studies provided no details about methods used. The US Fish and Wildlife study used 5 cm sediment cores and proved particularly inappropriate to use for comparative purposes. Another challenge in comparing different studies involves the specific PAH constituents included in each of the analyses. Most of the studies we reviewed utilized different numbers of analytes. In order to compare one study to another, the PAH constituents that were analyzed must be the same. Those constituents that overlap from study to study may be used to determine trends if the sampling and laboratory methodology is consistent.

Because of these difficulties, we present in this report only the sources of historical data, and not the actual data from each study.

The following piers have been dredged and have had sediment analyses completed: NorthEast Petroleum, Mobil Oil (three times), Star Enterprises, Merrill Industries (twice), Irving Oil, FPL Energy, Global Petroleum, Proprietors of Union Wharf, DiMillo's, Gulf Oil Ltd (three times), Portland Pipe Line Corporation, South Port Marine (twice), and Sprague Energy (twice). See Appendix C for contact information for the wharf owners that have dredged since 1994.

Sediment PAH concentrations from the 2004 study

Total PAH concentrations (ug/kg dry weight) found at several of the sediment sample sites were very high. Table 3 lists each site with its respective mean total PAH concentration as well as the ratio of mean low molecular weight PAH to mean total PAH. A summary of the data can be found in Appendix A, while all of the data is presented in Appendix B, and the full report from Katahdin Analytical Services is located in Appendix D.

Discussion

The literature search produced many potential sources of sediment PAH information, but unfortunately only a small amount of actual usable data, as mentioned above. Enough comparable data may exist for the mid-channel Fore River site (NRDA09) to establish a trend, although it needs to be noted that it is difficult to reoccupy the same station from study to study. By using only those studies that have employed similar methods, and comparing just those analytes that are consistent throughout, the historical data could prove to be a valuable resource.

The sediment analyses for PAHs at the 20 sites sampled in the harbor in 2004 has yielded an extremely important baseline against which future studies can be compared. In addition to serving as a baseline, this analysis presented intriguing information. Total mean PAH concentration at the Gas Works/Clay Docks (NRDA08) is extremely high at 278,300 ug/kg, as are the concentrations just off the two large combined sewer overflows at the Maine State Pier (NRDA16) and the Casco Bay Ferry Terminal (NRDA15), at 161,990 and 63,533 ug/kg, respectively. The two-site transect at the South Portland Shipyard, NRDA13 and NRDA14, revealed concentrations four times higher at the site closer to the shipyard. Surprisingly, mean total PAH concentration is lowest at the mouth of Long Creek, site NRDA03, which drains much of the Maine Mall area. This suggests that Clarks Pond, at the head of Long Creek, may be a sink for PAHs and potentially other toxics as well.

Site Description	Mean Total PAH	Ratio of Low
	concentration	Molecular Weight
	(ug/kg dry	PAH to Mean
	weight)	Total PAH
Upper Fore River	4,957	31%
Airport Cove	15,645	30%
Mouth of Long Creek	2,953	36%
Thompson Point Cove	6,223	31%
I-295 Cove, northeast corner	5,900	28%
Global Oil flat	4,707	24%
Off South Portland treatment outfall	22,800	27%
Gasworks, China Clay docks	278,300	25%
Mid-channel Fore River	13,307	29%
Vessel Services at the Fish Pier	15,723	30%
Widgery Wharf - west	35,000	28%
Widgery Wharf - east	30,767	30%
South Portland Shipyard – inner	25,613	27%
South Portland Shipyard – outer	6,180	31%
Casco Bay Ferry Terminal	63,533	21%
Maine State Pier	161,990	27%
Site of former BIW Dry Dock	7,010	35%
Near South Portland Boat Ramp	8,570	34%
Mill Cove, South Portland	8,370	31%
Pleasantdale Cove, South Portland	16,097	28%
	Upper Fore River Airport Cove Mouth of Long Creek Thompson Point Cove I-295 Cove, northeast corner Global Oil flat Off South Portland treatment outfall Gasworks, China Clay docks Mid-channel Fore River Vessel Services at the Fish Pier Widgery Wharf - west Widgery Wharf - west Widgery Wharf - east South Portland Shipyard – inner South Portland Shipyard – outer Casco Bay Ferry Terminal Maine State Pier Site of former BIW Dry Dock Near South Portland Boat Ramp Mill Cove, South Portland	concentration (ug/kg dry weight)Upper Fore River4,957Airport Cove15,645Mouth of Long Creek2,953Thompson Point Cove6,223I-295 Cove, northeast corner5,900Global Oil flat4,707Off South Portland treatment outfall22,800Gasworks, China Clay docks278,300Mid-channel Fore River13,307Vessel Services at the Fish Pier15,723Widgery Wharf - west35,000Widgery Wharf - east30,767South Portland Shipyard – inner25,613South Portland Shipyard – outer6,180Casco Bay Ferry Terminal63,533Maine State Pier161,990Site of former BIW Dry Dock7,010Near South Portland Boat Ramp8,570Mill Cove, South Portland8,370

Table 3.

It may be possible to predict, very generally, the potential toxicity of PAHs to benthic organisms using informal guidelines established through the NOAA Status and Trends program (Long *et al.* 1995). Two thresholds are suggested, an "Effects Range-Low" (ERL), the concentration below which toxicity rarely occurs (4,022 ug/kg), and an "Effects-Range-Median" (ERM), as the concentration above which toxicity is very likely (44,792 ug/kg). I have used these two levels to produce three categories: total mean PAH concentrations below the ERL, between the ERL and the ERM, and above the ERM. Only one of the 20 sites sampled in 2004 fell out below the ERL, NRDA03 at the mouth

of Long Creek. Figure 2 presents data from all 20 sites grouped into these three categories. Total PAH concentration values from the 2004 study represent the sum of the individual constituents, and we apply these guidelines cautiously, realizing that this may be a conservative total, and that we may be underestimating the potential toxicity. Calculating total PAH as the sum of the constituents is an established method set by previous studies, including the San Francisco Estuary Institute's Regional Monitoring Program for Trace Substances (Oakland, California).

The ratio of low molecular weight PAHs to total PAHs may be used to determine the likely source of the PAHs. Low molecular weight PAHs are generally associated with pre-combustion sources, such as oil spills, while high molecular weight PAHs are associated with run-off and air deposition. Low molecular weight PAHs are even less soluble in the marine environment than the higher molecular weight PAHs and therefore do not persist in the sediment for as long as the higher weight PAHs do. An interesting example is found at the Casco Bay Ferry Terminal site (NRDA15). This site has the lowest ratio of low molecular weight PAHs to total PAHs in this study, yet has one of the highest total concentrations. This suggests a very large source of post-combustion PAHs, which is most likely the CSO located at the site.

A subsequent analysis of the historical data may include a comparison of just those constituants that are similar from study to study, where collection methods allow. Of particular interest may be the NRDA09 site, which has now been sampled six times within the past 25 years

The 2004 sampling effort, supported by the Natural Resource Damage Assessment grant, provides an invaluable data set against which future insults to the Fore River and Portland Harbor may be measured and identifies challenged areas that might warrant particularly close attention through subsequent studies.

References and Literature Cited

Ashley, J.T.F. and J.E. Baker. 1999. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources. Env. Tox. Chem. 18:5.

Ghosh, U., J.S. Gillette, R.G. Luthy, and R.N. Zare. 2000. Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Env. Sci. Tech. 34: 1729-1736.

Julie N Oil Spill: Preassessment Data Report 1996. Maine Department of Environmental Protection.

Kennicutt, II, M.C., T.L.Wade, and B.J. Presley. 1992. Texas A&M University. Assessment of Sediment Contamination in Casco Bay. Casco Bay Estuary Project

Larsen, P., A. Johnson, and L. Doggett. 1983. Environmental Benchmark Studies in Casco Bay – Portland Harbor, Maine. NOAA Technical Memo. NMFS-F/NEC-19.

Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Env. Mgmt. 19:1897.

Metre, P.C.V., B.J. Mahler, and E.T. Furlong. 2000. Urban sprawl leaves its PAH signature. Env. Sci. Tech. 34: 4064-4070

Papadopoulou, D., and C. Samara. 2002. Polycyclic aromatic hydrocarbons contamination and Lumistox® solvent extract toxicity of marine sediments in the north Aegean Sea, Greece.

Toro, D.D. and J.A. McGrath. 1999. Defining total PAH concentration in a field collected sediments. EPA Document 600R02013, Procedures for the derivation of equilibrium partitioning sediment benchmarks (esbs) for the protection of benthic organisms: PAH mixtures.

San Francisco Estuary Institute, Regional Monitoring Program for Trace Substances, Oakland, California

Sediment Quality Guidelines developed for the National Status and Trends Program 1999. National Oceanic and Atmospheric Administration.

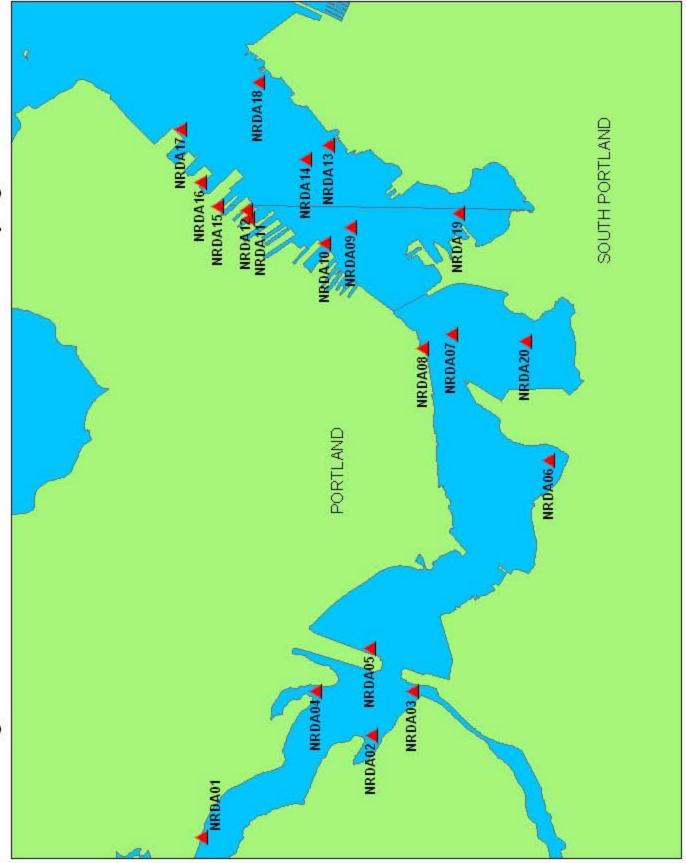
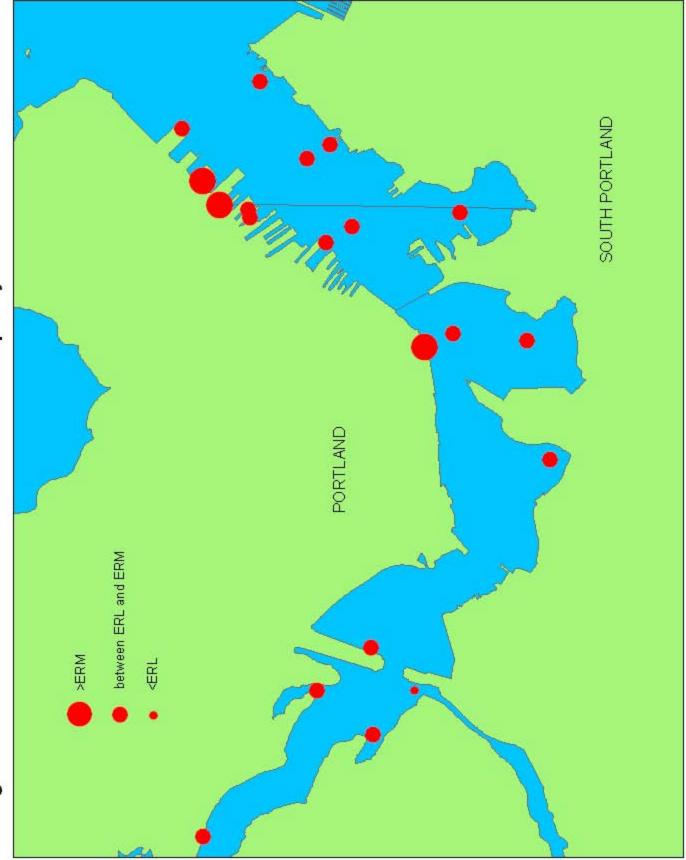



Figure 1 - 2004 Fore River / Portland Harbor Sediment Sampling Sites

	DIX A - 20		ummary		
Units: ug/	kg dry weigh	nt 🚽			
		Ratio of Low MW PAH to Total PAH	Total PAH	Total Low MW PAH	Total High MW PAH
NRDA01	mean	31%	4,957	1,507	3,450
	sd		810	175	678
NRDA02	mean	30%	15,647	4,630	11,017
	sd		1,658	195	1,463
NRDA03	mean	36%	2,953	1,073	1,880
	sd		60	40	36
NRDA04	mean	31%	6,223	2,103	4,120
	sd		3,247	1,696	1,561
NRDA05	mean	28%	5,900	1,643	4,257
	sd		412	228	278
NRDA06	mean	24%	4,707	1,140	3,567
	sd		919	269	651
NRDA07	mean	27%	22,800	6,137	16,663
	sd		2,705	642	2,116
NRDA08	mean	25%	278,300	70,633	207,667
	sd		78,758	20,723	58,358
NRDA09	mean	29%	13,307	3,910	9,397
	mean		3,730	1,330	2,480
NRDA10	sd	30%	15,723	4,730	10,993
	mean		2,460	611	1,892
NRDA11	sd	28%	35,000	9,700	25,300
	mean		854	173	700
NRDA12	sd	30%	30,767	9,300	21,467
	mean		4,952	954	4,038
NRDA13	sd	27%	25,613	6,837	18,777
	mean		1,208	487	733
NRDA14	sd	31%	6,180	1,947	4,233
	mean		1,576	756	859
NRDA15	sd	21%	63,533	13,100	50,433
	mean		11,524	2,666	8,864
NRDA16	sd	27%	161,990	44,990	117,000
	mean		58,714	19,106	39,971
NRDA17	sd	35%	7,010	2,380	4,630
	mean		2,116	440	1,691
NRDA18	mean	34%	8,570	2,980	5,590
	sd		1,900	1,057	851
NRDA19	mean	31%	8,370	2,580	5,790
	sd		1,270	150	1,123
NRDA20	mean	28%	16,097	4,347	11,750
	sd		9,245	2,318	7,518

		веихо[6,н,і]рекүгеие	240	190	300	660	560	640	160	150	150	240	200	580	290	300	320	350	240	250	720	640	710	6,700	11,000	5,800	580	680	320	570
		DIBENZO(H,A)ANTHRACEN	240	190	200	660	560	640	160	150	150	160	140	580	250	240	180	200	130	130	460	640	710	2,500		5,700	580	680	320	570
		INDENO(1,2,3-CD)PYRENE	260	190	320	660	560	640	160	150	150	270	220	580	330	310	290	370	260	280	830	640	740	7,400	13,000	6,300	580	680	320	570
		ВЕИХО(А)РҮRENE	400	280	420	1.200	970	920	170	180	180	390	320	580	420	480	470	480	340	360	1,500	1,200	1,600	16,000		19,000	970	880	600	770
		веизо(к) глоякитнеие	340	230	370	1.600	1,200	1,100	170	170	150	310	290	580	380	430	360	380	260	300	1,400	1,200	1,600	14,000	22,000	14,000	710	720	430	660
		веизо(в)гг∪ок∧итнеие	320	280	380	1.400	920	1,200	160	150	200	380	280	580	420	420	430	440	340	350	1,400	1,200	1,300	12,000	20,000	16,000	970	720	660	880
		CHKYSENE	380	280	410	1.400	1,100	940	170	180	160	350	300	580	400	480	420	450	320	340	1,800	1,400		16,000	27,000	19,000	1,000	920		830
		ВЕИХО(А)АИТНЯАСЕИЕ	270	200	310	066		710	160		150	290	250	580			350	320	240	260	1,700		1,600			19,000	1,600	1,200		1,100
		РҮRENE	520	380	590	2.000	1,700	1,500	260	290	260	440	430	640	590	650	530	530	400	420	4,400	2,600	4,800			40,000	2,000	1,500	1,100	1,200
		FLUORANTHENE	660	480	720	2.100	2,000	1,600	320	340	290	700	510	610	660	006	810	790	570	600	3,700	3,400	3,200	39,000	63,000	46,000	2,400	2,200	1,400	2,000
		HA9 WM AgiH IstoT	3,630	2,700	4,020	12.670	10,490	9,890	1,890	1,910	1,840	3,530	2,940	5,890	4,040	4,570	4,160	4,310	3,100	3,290	17,910	14,220	17,860	159,600	272,600	190,800	11,390	10,180	6,620	9,150
		АИТНЯРСЕИЕ	240	190	200	660	560	640	160	150	150	160	140	580	250	240	180	200	130	130	970	670	1,000	12,000		14,000	580	680	320	570
		РНЕИАИТНЯЕИЕ	240	190	310	890	1,200	640	160	150	150	230	220	580	270	340	300	250	190	220	2,900	1,600	2,200			27,000	940	830	480	610
		FLUORENE	240	190	200	660	560	640	160	150	150	160	140	580	250	240	180	200	130	130	480	640	710	4,500	7,500	5,700	580	680	320	570
		АСЕИАРНТНЕИЕ	240	190	200	660	560	640	160	150	150	160	140	580	250	240	180	200	130	130	460	640	710	2,500	6,600	5,700	580	680	320	570
		АСЕИАРНТНҮLENE	240	190	200	660	560	640	160	150	150	160	140	580	250	240	180	200	130	130	460	640	710	2,500	6,600	5,700	580	680	320	570
		2-МЕТНҮLИАРНТНАLENE	240	190	200	660		640	160	150	150	160		580		240	180	200		130	460	640		2,500		5,700	580	680		570
Ita		ЭИЭЈАНТНЯАИ	Ň	190	200	660		640	160	150		160		580		240	180	200		130	460	640				5,700	580	680		570
- 2004 Data	ight	HA9 WM wo1 lstoT	1,6	1,330	1,510	4.850			1,120		1,050	1,190		4,060	1,770	1,780	1,380	1,450	970	1,000	6,190		6,750			69,500	4,420	4,910		4,030
), dry we	HA9 IstoT	5,310	4,030	5,530	17.520	15,050	14,370	3,010	2,960	2,890	4,720	4,000	9,950	5,810	6,350	5,540	5,760	4,070	4,290	24,100	19,690	24,610	210,100	364,500	260,300	15,810	15,090	9,020	13,180
APPENDIX B	Units: ug/kg, dry weight		NRDA01-1	NRDA01-2	NRDA01-3	NRDA02-1	NRDA02-2	NRDA02-3	NRDA03-1	NRDA03-2	NRDA03-3	NRDA04-1	NRDA04-2	NRDA04-3	NRDA05-1	NRDA05-2	NRDA05-3	NRDA06-1	NRDA06-2	NRDA06-3	NRDA07-1	NRDA07-2	NRDA07-3	NRDA08-1	NRDA08-2	NRDA08-3	NRDA09-1	NRDA09-2	NRDA09-3	NRDA10-1

		веихо[G,H,I]рекүгеие	660	700	1 300	1 200	1,300	1,200	1,300	1,300		950	930	380	180	300	1,700	2,000	1,300		7.300	2,700	330	260	380	600	330	330	350	360
		DIBENZO(H,A)OZNƏBID	660	700	1 300			1,200	1,300	1,300	000	850	800	380	170	200	1,100		1,200	3 700 1	-		330	260	340	600	330	330	350	360
		INDENO(1,2,3-CD)PYRENE	660	700	1 400	1 100	1,300	1,200	1,300	1,300	100	1,100	1.000	380	200	290	2,000	2,200	1,700	7 200	6.700	3,200	330	260	390	600	330	360	350	360
		веихо(к)рүкеие	1,000	006	2 100	2,100 100	2,100	1,700	2,300	1,500	1 600	1,500	1.400	500	340	470	3,900		3,400	14.000	13.000	6,500	330	300	670	600	510	540	670	480
		веизо(к) FLUORANTHENE	850	730	2 900	000 0	2,000	1,500	2,000	1,600	002 1	1,700	1.300	390	280	360	4,600	6,400	3,800				330	260	520	600	440	400	620	430
		веизо(в) FLUORANTHENE	1,100	870	2 800			2,200		2,100				410	310	330	4,700		4,500	1 000 1	13.000 1		330	270	670	600	420	550	630	520
		СНУУЗЕИЕ	1,200	1,000	3 400	3 200	3,500	2,100	3,300	2,200		2,100	1.900	 480	320	440	6,200		5,500	17 000 1		-	350	300	650	600	560	520	680	500
		веизо(к) китнкасеие	1,900	1,300	2 600	000/- C	2,500	1,800	2,600	1,500		1,400	1.300	440	300	450	4,000	5,000	3,600	11.000			340	310	630	600	480	480	780	570
		РҮRЕИЕ	1,800	1,500	3 800	3 000	3,500	2,800	4,300	4,800		4,100	4.100	630	560	630	10,000	12,000	8,700		-	14,000	600	520	1,000	750	890	630	1,000	820
		FLUORANTHENE	3,100	2,500	4 400	3 000	4,300	3,000	4,600	2,000	002 0	3,900	3.400	1,000	640	940	10,000		9,200	33 000	-		710	620	1,300	1,000	1,000	790	1,600	1,100
		HA9 WM dgiH IstoT	12,930	10,900	26,000	25 300	24,600	18,700	26,100	19,600	100	19,130	17.930	4,990	3,300	4,410	48,200		42,900	146 900			3,980	3,360	6,550	6,550	5,290	4,930	7,030	5,500
		АИТНЯРСЕИЕ	660	700	1 300	1 200	1,300	1,200	1,300	1,300	020	1.000		380	170	200	1,300	2,100	1,200	10001			330	260	340	600	330	330	350	360
		ЭНЕИАИТНЯЕИЕ	1,200	800	000 6			1,200	2,500	1,400	000	2,000	1.500	 510	310	520	5,400		3,800	36 000 1			380	390	790	600	420	360	630	420
		FLUORENE	660	700	1 300	1 200	1,300	1,200	1,300	1,300	090	850	800	380	170	200	1,100	1,100	1,200	5 400	5.200	2,200	330	260	340	600	330	330	350	360
		ACENAPHTHENE	660	700	1 300	1 200	1,300	1,200	1,300	1,300	090	850	800	380	170	200	1,100	1,100	1,200	5 000	4,300	1,600	330	260	340	600	330	330	350	360
		АСЕИАРНТНҮLEИЕ	660	700	1 300	1 200	1,300	1,200	1,300	1,300	090	850	800	380	170	200	1,100	1,100	1,200	530	810	930	330	260	340	600	330	330	350	360
		2-МЕТНҮСИРРНТНАСЕИЕ	660	700	1 300			1,200		1,300	090	850	800	380	170	200	1,100		1,200	1 500	1.200	930	330	260	340	600	330	330	350	360
ta		ЭИЭЈАНТНЯАИ	9	700	1 300			1,200		1,300	090					200	1,100		1,200	4 400			330		340	600			350	
- 2004 Data	ght	HA9 WM wol IstoT	5,1		0 800			8,400	-	9,200						1,720	12,200		11,000	62 830	47,310		2.360		2,830	4,200		2,340	2,730	
	g, dry wei	HA9 IstoT	18,0		35 800	35 100	34,100	27,100		28,800	06 1EO	26,460		7,780	4,630	6,130	60,400		53,900	200 730			6,340	5,310	9,380	10,750	7,690		9,760	8,080
APPENDIX B	Units: ug/kg, dry weight		NRDA10-2	NRDA10-3	NRDA11-1		NRDA11-3	NRDA12-1	NRDA12-2	NRDA12-3		NRDA13-1 NRDA13-2	NRDA13-3	NRDA14-1	NRDA14-2	NRDA14-3	NRDA15-1	NRDA15-2	NRDA15-3		NRDA16-2	NRDA16-3	NRDA17-1	NRDA17-2	NRDA17-3	NRDA18-1	NRDA18-2	NRDA18-3	NRDA19-1	NRDA19-2

3 3 РНЕИОЛЕИЕ 3 3 РНЕИЛТИВЕИЕ 3 3 РНЕИЛТИВЕИЕ 3 3 РНЕИОЛЕИЕ 3 3 РНЕИОЛИТИВЕИЕ 3 3 РНЕИОЛЕИЕ 3 3 РНЕИОЛИТИВО 3 3 РНЕИОЛИТИВО 3 4 8 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 9 3 9 9 3 9 9 3 9 9 3 9 9 3 9 9 3 9 9 <th>210 210 420 210 5,350 1,000 740 410</th>	210 210 420 210 5,350 1,000 740 410
3 3 РНЕИОЛЕИЕ 3 3 РНЕИЛТИВЕИЕ 3 3 РНЕИЛТИВЕИЕ 3 3 РНЕИОЛЕИЕ 3 3 РНЕИОЛИТИВЕИЕ 3 3 РНЕИОЛЕИЕ 3 3 РНЕИОЛИТИВО 3 3 РНЕИОЛИТИВО 3 4 8 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 Р 3 9 9 3 9 9 3 9 9 3 9 9 3 9 9 3 9 9 3 9 9 <th>210 220 2,700 2,700 2,700 2,700 2,000 2,000 2,000</th>	210 220 2,700 2,700 2,700 2,700 2,000 2,000 2,000
3 3 АИТНЯАСЕИЕ 3 3 АИТНЯАСЕИЕ 3 4 4 3 4 4 4 4 4 5 5 4 5 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 6 4 6 6 4 6 6 4 6 6 4 7 4 4 6 6 4 7 4 4 6 6 4 7 4 4 7 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4<	210 5,350 1,000 740 2,000
9.937 4.40 7.40 7.40	5,350 1,000 740 410
1, 10 1, 10 <t< td=""><td>1,000 740 410</td></t<>	1,000 740 410
30 9	740 2,000 740 410
8 8 ВЕИZO(А)АИТНЯАСЕИЕ 8 8 ВЕИZO(А)АИТНЯАСЕИЕ 9 8 ВЕИZO(В)FLUORANTHENE	410
8 8	
BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(K)FLUORANTHENE	Ŷ
В веизо(к) гловулинеие	
	590
888 8 INDENO(1,2,3-CD)РҮRENE	320 410
BENZO(G,H,I)PERYLENE BENZO[G,H,I]PERYLENE	

	_						
Year Dredge	Pier	Company	Previous Owner	Contact	Street Address	City, State, Zip	Phone
Permit Requested							
1994		South Port Marine	Marine East Marina	Kip Renolds	14 Ocean St	South Portland, ME 04106	207-799-8191
1994		800 Northern Corp.	Irving?	John Caucoulidis	2 Monument Square	Portland, ME 04101	
		Irving Oil Corp		Al Small	700 Maine Ave	Bangor, ME 04401	207-947-9365
1995		Sprague Energy Corp.	Rolling Mills	Tom Dobbins	59 Main St	South Portland, ME 04106	207-799-4899
1995		Gulf Oil Limited Partnership		David Moody	175 Front St.	South Portland, ME 04106	207-799-
1996		City of Portland Department of Transportation & Waterfront		Ben Snow	40 Commercial St., Suite 100	Portland, ME 04101	207-541-6900
1996	South Port Marine	South Port Marine		Kin Renolds	14 Ocean St	South Portland ME 04106	207-799-8191
1996	Vharf	Properties of Union Wharf		Charlie Pool	36 Union Wharf	Portland, ME 04101	207-772-8160
1997		City of Portland Department of Transportation & Waterfront		Ben Snow	40 Commercial St., Suite 100	Portland, ME 04101	207-541-6900
1997		Gulf Oil Limited Partnership		David Moody	175 Front St.	South Portland, ME 04106	207-799-
1000	-						
1990		MODILOIL CUP.		Dart Wittiler		South Foruand, ME 04100	
1998	Northeast	Global Petroleum Corp.		Bruce Yates	I Clark Rd.	South Portland, ME 04106	207-583-9196
1998		Sprague Energy Corp.		Tom Dobbins	59 Main St	South Portland, ME 04106	207-799-4899
1998	DiMillo's	DiMillo's		Chris DiMillo	Long Wharf	Portland, ME 04101	207-773-7632
1999		Merrill Industries, Inc.		P.D. Merrill or Armand Demers	601A Danforth St	Portland, ME 04102	207-772-3254
2000		Mobil Oil Corp.		Bart Wittmer	170 Lincoln St.	South Portland, ME 04106	207-767-3251
2000		FPL Energy Maine Hydro LLC	CMP	Al Wiley	160 Capitol St.	Augusta, ME 04330	207-623-8413
				c/o Bruce Coggeshall Managing			
2001		Fore River Properties		Director	Pierce Attwood One Monument Square	Portland, ME 04101	207-791-1234
2003		Portland Pipeline Corporation		Ken Brown	P.O. Box 2590	South Portland, ME 04116-2590	207-767-0449
2003		Gulf Oil I imited Partnershin		David Moody	175 Eront St	Courth Doutlond ME 04106	007 700