
University of Southern Maine University of Southern Maine

USM Digital Commons USM Digital Commons

All Theses & Dissertations Student Scholarship

2013

A Federated Architecture for Managing Health Information in A Federated Architecture for Managing Health Information in

Ethiopia Ethiopia

Russell Gillen MS
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gillen, Russell MS, "A Federated Architecture for Managing Health Information in Ethiopia" (2013). All
Theses & Dissertations. 95.
https://digitalcommons.usm.maine.edu/etd/95

This Open Access Thesis is brought to you for free and open access by the Student Scholarship at USM Digital
Commons. It has been accepted for inclusion in All Theses & Dissertations by an authorized administrator of USM
Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

https://digitalcommons.usm.maine.edu/
https://digitalcommons.usm.maine.edu/etd
https://digitalcommons.usm.maine.edu/students
https://digitalcommons.usm.maine.edu/etd?utm_source=digitalcommons.usm.maine.edu%2Fetd%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usm.maine.edu%2Fetd%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usm.maine.edu/etd/95?utm_source=digitalcommons.usm.maine.edu%2Fetd%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.fowler@maine.edu

A Federated Architecture for Managing Health
 Information in Ethiopia

A Thesis Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in Computer Science

University of Southern Maine

Department of Computer Science

By

Russell Gillen

2013

ii

ACKNOWLEDGEMENTS

First I'd like to express my thanks to Professor Bruce MacLeod for

being a great mentor and colleague to work with. I have learned a

tremendous amount about software development (and writing) during my

time with Bruce and those experiences have been invaluable. I'd also like to

thank all of the other professors and teachers that have aided me along the

way and helped to stimulate me intellectually. And I am thankful to all of my

friends and family for encouraging me and asking about my work when they

didn't have any idea what most of it meant. Especially my mother's allusions

to “the platform”! The University of Southern Maine has granted me the

opportunity to work on a world class project such as MOTECH and I am

forever grateful for that. Many of the lessons I have learned during my time at

the University will be with me for the rest of my career. Thanks everyone!

iii

ABSTRACT

Electronic health systems can be leveraged to aid in the delivery and

management of health care for patients in developing countries. The delivery

of health information by mobile devices is playing an increasing role in health

information management. Mobile health software systems can be utilized to

target under-served populations for health care administration by providing

messaging and alerting for reminders, informational messages, patient

compliance and more. MOTECH is a software framework developed primarily

for aiding health care delivery in under-served populations. This thesis

utilizes and extends the MOTECH software framework to meet the

requirements for a health systems pilot project in Ethiopia. The pilot project

also serves as a model to help drive the development of the MOTECH

platform.

iv

Table of Contents

I. Introduction 2
1.1 – Electronic Health Systems 2
1.2 – Health care delivery using mobile phones in developing

countries 3
1.3 – MOTECH 7
1.4 – Ethiopia Pilot Project and accomplishments 8

II. Background 9
2.1 – MOTECH 9
2.2 – Second Generation MOTECH 10

2.2.1 – MOTECH as a modular architecture 11
2.2.2 – MOTECH's event driven messaging system 13
2.2.3 – MOTECH suite as a federated architecture 16

2.3 – CommCareHQ 18
2.3.1 – Overview of functionality 18
2.3.2 – CommCare's case data model 22

2.4 – OpenMRS 23
2.4.1 – EAV 24
2.4.2 – Providers 25
2.4.3 – Locations 26

2.5 – Interoperability between software systems 27
2.6 – Mismatch between data models 28
2.7 – OpenHIE 29

III. Implementation and methodology 33
3.1 – Collaborative Ethiopia Pilot Project 33

3.1.1 – Phase 1B 33
3.1.2 – Phase 1C 36
3.1.3 – Phase 1D 38

3.2 – MOTECH's interoperability with other systems 41

3.3 – Data mismatch and data mapping 45
3.3.1 – CommCare to OpenMRS mapping 47
3.3.2 – Mapping from OpenMRS into CommCare 54

3.4 – Identity Brokering 57

IV. Discussion 61
4.1 – Working within a platform architecture 61

v

4.2 – The design challenges and opportunities for federated
systems 65
4.2.1 – Interoperability integration strategies 65
4.2.2 – Error handling in a modular environment 72

4.3 – The software coding burden and the evolution of
the platform 75
4.3.1 – MOTECH UI 76
4.3.2 – Tasks module 77
4.3.3 – Seuss data model 79

V. Conclusion 80

References 81

vi

List of Figures

Figure 2.1: MOTECH's modular architecture 11
Figure 2.2: MOTECH's Event Driven Architecture 14
Figure 2.3: MOTECH code example of events and listeners 15
Figure 2.4: MOTECH's Federated Architecture 17
Figure 2.5: CommCare user login screen shot 20
Figure 2.6: Pregnancy form emergency signs list

screen shot 21
Figure 2.7: CommCare Case specification 22
Figure 2.8: Example OpenMRS concept 24
Figure 2.9: OpenHIE Architecture 30
Figure 3.1: Ethiopia phase 1B Architecture 34
Figure 3.2: Ethiopia phase 1C architecture 37
Figure 3.3: Interoperability overview 40
Figure 3.4: CommCare module features 42
Figure 3.5: Active notifications from CommCareHQ 44
Figure 3.6: Active notifications by IVR providers 44
Figure 3.7: Flow of data during mapping 46
Figure 3.8: Pregnancy registration mapping configuration 48
Figure 3.9: Observation value mapping 53
Figure 3.10: CommCareHQ to OpenMRS mapping

architecture 55
Figure 3.11: Example OpenMRS atom feed data 56
Figure 3.12: Provider identity brokering 57
Figure 3.13: Provider identity brokering details 60
Figure 4.1: Synchronizing providers across systems 70
Figure 4.2: Proposed MOTECH exception handling 73
Figure 4.3: MOTECH UI for module management 76
Figure 4.4: MOTECH UI for CommCareHQ settings 77
Figure 4.5: Example UI design of a task 78

vii

I. Introduction

1.1 - Electronic Health Systems

Health systems help providers, institutions, and governments

facilitate the delivery of health care to patients. Prior to the development of

electronic medical records, health information systems were paper based.

Paper based health systems often face many challenges, including error

correction, organizational and logistics chains, sharing data between

institutions or even within a single facility, and difficulty in reporting and

management. Electronic health systems address many of these

challenges and offer new features otherwise not available with paper

based systems [1].

Electronic health record systems help improve coordination,

accuracy of diagnosis and treatment, medical compliance, patient

participation, quality, education, convenience and cost savings. Decision

based care can be automated through software systems when it would

otherwise require manual intervention by a provider. Messaging and

alerting, analytical reports and much more can be achieved by adopting

an electronic based health system. A number of paper based health

systems around the world, including those found within developing

countries, are transitioning to electronic health systems [2]. Re-usable and

extensible software platforms can help alleviate the need to build an

electronic health information system from scratch and one such project,

MOTECH, aims to achieve this by supporting numerous use cases that

2

are primarily related to health care delivery in low resource settings.

1.2 – Health care delivery using mobile phones in
developing countries

Health care delivery in developing countries poses many

challenges. With the rapid increase in mobile phone usage, numerous

strategies are being explored to leverage this technology. Pilot projects

are using mobile devices as information systems for health workers,

interactive voice response (IVR) phone calls are being placed directly to

patients, and SMS based messaging is helping improve operational

logistics for drug supplies [4, 5, 6]. The use of Mobile devices continues to

grow world wide and software applications represent a burgeoning

subsection of the computing industry. It is this proliferation and increasing

access for lower income regions that has made mobile handsets a focal

point for improving health care delivery.

There is a large organizational disparity between health care

systems found in developed countries and in developing countries. In

developed countries, regulation and laws have established a complex and

intricate ecosystem that new software systems must navigate. Attempts to

standardize and streamline electronic health systems have been

underway for years, which have met some success. The HLA Clinical

Document Architecture (CDA) has multiple implementations attempting to

address this issue by providing an XML standard for communicating

health information [3]. Electronic health information standards, regulations

and a greater adherence to legal requirements can require significant

3

investment for successfully deploying mobile health applications in

developed countries. Developing countries are struggling to determine

which standards to adopt, if any, and many of the projects are smaller and

do not adhere to any regulatory standard. In some respects, software

development of health information systems in developing countries can be

easier because there are fewer legal and standards-based hurdles to

cross during implementation [4].

Short Message Service (SMS) text messages are playing an

increasingly larger role in mobile health care delivery around the world.

Sending and gathering medical information, expert responses for user

questions, patient to provider connections and transactions are just some

of the ways text messaging on mobile phones are being used in the health

and medical field. One of the most common use cases for medical text

messaging is for notification and education outreach, including

educational messages on topics from pregnancy or health tips, as well as

reminder notifications for pills, appointments or even a reminder to drink

water [5].

In 2011 a mobile health summit was held in Africa to assess the

current state of mobile health. While many participants agreed on the

useful health care delivery mobile devices can provide, one government

minister from South Africa called for caution over potential pitfalls,

including regulation, confidentiality and cost to patients. However, the

benefits of mobile health are already being realized. The World Health

Organization (WHO) released a report showing that 83% out of the 122

4

surveyed countries use mobile phones for free emergency calls, text

messaging for pill reminders, dissemination of health information and

transmission of test and lab results. The WHO has set up the Global

Observatory for eHealth in Geneva and reports that up to 40 African

countries are already using mobile health services [6].

Mobile phones are not only being used to inform both patients and

physicians, they are also being used by nurses and less experienced

health workers that sometimes are in need of reminders or informational

messages themselves. One study has examined how to improve health

worker performance through automated SMS. Community health workers

typically receive limited training in their role as an interface between the

medical health system and the community. These workers are usually

from the community they are serving and sometimes contribute as

volunteers. The study used an escalating reminder system that sends

SMS text message reminders to the health workers until finally notifying

his or her supervisor after several late days. These reminders resulted in

an 86% reduction in the average number of days that the clinical workers

were late with their reports or submissions [7].

Veterans Affairs Ann Arbor Healthcare System and the University of

Michigan teamed up to conduct a study on cell phones and their effects

on health care in less developed countries. The study was conducted in a

low income region of Honduras and concluded that mobile phones could

help low-income patients manage diabetes and other chronic diseases.

Diabetics were enrolled into the program using low-cost Internet-based

5

cell phones that interacted with a back-end cloud service. Individual

patients received automated, interactive phone calls on a weekly basis.

The researchers discovered that these phone calls provided significant

improvement to patient diabetes management and general health. A

documented, clinically important improvement was observed in patient

blood sugar control. Of those participating in the diabetes management

service, 92% expressed that they would use the service again. The effects

of mobile health are already underway and successful pilots in traditionally

less tech savvy regions point to a major role of mobile devices in future

health care outcomes [8].

Mobile health is not progressing without facing challenges. A study

in Pretoria, South Africa examined the adoption and sustainability of

mobile health phones by practitioners and patients. The researchers

discovered that the success of a program is largely dependent on patient

and care giver willingness to adopt and learn new technologies, the cost

of these technologies (such as phone service expenditures), and opinions

regarding government sponsored services. One of the major challenges of

mobile health going forward is the human element. The study determined

that many health workers are reluctant to abandon their paper based

systems in favor of a new, untested paradigm shift [9].

Patty Mechael, executive director of the U.N. Foundation's mHealth

alliance, as well as others, claim that organizations must attempt to filter

out the feasible, useful applications of mobile health from those that are

not. There are many challenges in developing national mobile health

6

systems, including lack of reliable energy sources to power the phone

chargers in low income countries, scalable information systems, and

understanding the efficacy of pilot interventions. While there are

numerous pilot programs throughout the world, Mechael argues that we

need to be “more strategic, collaborative, cohesive” in our approach to

mobile health. Josh Nesbit, CEO of Medic Mobile, points out the large

media coverage of mobile health in recent years and how it may appear

that millions of health workers have already integrated mobile phones into

regular practice, while the reality of the situation is that the number is in

the tens of thousands [10].

1.3 - MOTECH

MOTECH is an extensible open-source software platform originally

developed by the University of Southern Maine and being led by the

Grameen Foundation that primarily targets electronic health care delivery

and messaging. MOTECH is a modular based software system and is the

foundation for the work completed during the course of this thesis.

MOTECH provides many features, including IVR and SMS messaging,

alerting, electronic medical record support and customized schedules of

care for patients. MOTECH is a generalized framework that is intended for

use by implementations that are able to leverage the platform's features to

accomplish project specific requirements.

7

1.4 - Ethiopia Pilot Project

As part of the work completed during this thesis, a health

information software pilot project for Ethiopia was undertaken in

cooperation with Andy Kanter from Columbia University. The project

focused on two areas of health information: improving health indicator

reporting for regional facilities across Ethiopia and collecting individual

level health data for pregnant mothers and their children by utilizing

mobile phones.

During the course of the thesis a software implementation of

MOTECH was developed and successfully deployed in Ethiopia. The

project was deployed in two phases: an indicator reporting phase that

leveraged MOTECH for health facility compliance and messaging,

followed by a proof of concept demonstration presented by Andy Kanter of

Columbia University for the Ethiopian Ministry of Health. During the work

of the thesis we identified three key challenges throughout the process:

interoperability between software systems, mapping data between two

disparate data models, and consolidating the identity of health providers

and facilities across software systems. We addressed these challenges by

developing various software modules within the MOTECH platform to

provide the necessary functionality to meet the project's requirements.

The details of these modules are described in the implementation and

methodology section.

8

II. Background

2.1 - MOTECH

Mobile Technology for Community Health (MOTECH) began as a

project to aid the quality and quantity of health care for pregnant mothers

and infants in Ghana. The initial pilot study also seeks to determine

whether health information delivered by mobile phones can improve the

health outcomes and quality of care in rural clinics. The project was a

partnership between Ghana Health Service, Grameen Foundation,

Columbia University and a group at the University of Southern Maine.

Launched in 2010, this first iteration of MOTECH has two main

applications: a Mobile Midwife application and an application for nurses.

The Mobile Midwife application's main function is to send SMS or voice

messages to pregnant women and their families with time sensitive

information related to pregnancy on a week by week basis. These

informational messages are provided in multiple languages. Included

among the messages are alerts and reminders for health treatments,

actionable information and educational information.

The nurse's application records and tracks the care delivery for

women and newborns in a community health worker's area. A nurse can

enter data into a mobile phone regarding a patient's clinic visit which

MOTECH will use to make health care related decisions for sending

health service reminder messages. Health workers are alerted of overdue

patient treatments which can result in real world follow ups by the health

9

worker. Additionally, MOTECH can generate monthly reports for district

and regional management offices. This first MOTECH incarnation did not

meet scalability requirements that a more flexible, modular architecture

could provide. The ideas behind the original MOTECH system have driven

a more generalized platform that can be utilized in a wide range of health

care projects and potentially used in other business domains such as

agricultural management [11, 12, 33].

2.2 - Second Generation MOTECH

A new effort to develop a generalized, multipurpose platform is

underway by the Grameen foundation and other partners, including the

University of Southern Maine. The new MOTECH platform is a modular

software architecture that allows implementers to choose the features

they need and provides a path for making use of project specific business

logic. By providing a template for implementers to extend, the new

MOTECH platform reduces the need to architect and build a mobile health

system from the ground up.

As part of the work on this thesis, we have extended the second

generation MOTECH architecture to support the use case requirements of

a pilot project in Ethiopia. New requirements that arose during the work of

the thesis have provided feedback that has helped drive development and

design of the platform. We generalized many of these requirements and

added the code back into the platform, therefore allowing other

implementations to meet these same use case requirements.

10

MOTECH's Architecture

Figure 2.1: MOTECH's modular architecture

2.2.1 - MOTECH as a modular architecture

The MOTECH application is a modular architecture that resides in

an Open Services Gateway initiative (OSGi) framework. OSGi is a

specification to enable modular deployment of Java applications. A

modular architecture separates functionality into self-contained

11

components that can be maintained and developed with low coupling

between separate components residing in the system. MOTECH consists

of a core platform, which represents the minimum amount of infrastructure

required to run the system, and also includes additional platform modules

that can be included and configured to achieve the desired functionality

for an implementation. Other custom modules can also be installed within

the OSGi framework as long as they conform to OSGi standards [13].

MOTECH uses the OSGi specification to stop, start and update

individual modules during deployment. Leveraging the OSGi specification

allows the system to stay up while pieces of it are incrementally updated

or enhanced. OSGi also manages different versions of software packages

within the same run time environment, allowing for the installation of

modules that depend on different versions of the same library to co-exist

without conflicts. The aim of OSGi and modular development in general is

to reduce development time and maintenance costs [13].

Figure 2.1 demonstrates MOTECH's modular architecture.

MOTECH is split into a number of OSGi bundles residing within an OSGi

container. These bundles are further split into core platform bundles and

optional implementation bundles. The core platform bundles are

necessary for the event architecture, security, configuration and other

critical infrastructure components needed for the system to operate.

Implementation bundles provide optional features that implementers can

utilize to enhance their project, such as IVR and SMS capability, an

electronic medical record system and customized schedules of care for

12

patients.

Many of MOTECH's modules publish services through an OSGi

service registry, conforming to the service locator pattern [14]. Other

modules do not have to be aware of the implementation details of the

service to utilize it. For example, there are three modules that provide the

same medical record system features: one module that interacts directly

with the OpenMRS SQL database, another that communicates with

OpenMRS through its web services module, and another that acts as a

basic medical information repository internal to MOTECH using CouchDB.

Swapping between modules should be seamless because other bundles

within the framework consuming their services are unaware of the

underlying implementation details.

2.2.2 - MOTECH's event driven messaging system

MOTECH is an event-driven software system. Event-driven

systems make use of the observer pattern for event publishing and

subscribing [15]. Events occur in isolation and represent key, actionable

information taking place in MOTECH, such as a late status for a schedule

of care, a new CommCare form's arrival, a medical encounter's creation

or the end of an IVR call. Many events are raised by the platform and it is

expected that implementations will decide what actions, if any, should be

taken based upon these events.

13

Figure 2.2: MOTECH's Event Driven Architecture

MOTECH uses its event relay to publish events along with any

relevant data as part of their payload. Each event must define a subject

which represents its identity. Interested modules or pieces of the system

14

register listeners on an event subject or set of event subjects. When an

event is raised within the system it is dispatched to all registered listeners

one by one. The event relay shuttles the events to a JMS server

(ActiveMQ) which forwards them back to MOTECH for processing. Figure

2.2 is an architectural diagram detailing these features of the event

system within MOTECH.

There are project specific requirements that sometimes can not be

met with the features provided by the MOTECH platform. When a project

needs to add functionality to the system, code must be written in a custom

module to extend and interact with the platform's events and listeners.

Figure 2.3 demonstrates how the process is achieved in custom code:

Figure 2.3: MOTECH code example of events and listeners

15

2.2.3 - MOTECH suite as a federated architecture

MOTECH resides within a federated architecture to interoperate

with other external systems. This grouping of various systems has been

referred to as the “MOTECH suite”, where MOTECH acts as the key

middle software component that helps facilitate the transfer of data

between each system in addition to its various other roles as a messaging

and scheduling framework. MOTECH can communicate with a variety of

systems, including CommCareHQ, OpenMRS, an array of SMS and IVR

providers, ActiveMQ, and CouchDB. Figure 2.4 illustrates MOTECH's

federated architecture and how a health worker and user might interface

with the system. A MOTECH deployment is not limited to the above

features and may also choose to exclude interoperability modules if it

does not make use of these external systems.

16

Figure 2.4: MOTECH's Federated Architecture

17

2.3 - CommcareHQ

2.3.1 - Overview of functionality

CommCareHQ is an open source software system developed by

Dimagi to support mobile form data entry. CommCare primarily aids

community health workers that are working in communities to facilitate

information gathering and medical reporting. CommCareHQ provides its

own repository to store data and features reporting for the forms that have

been submitted. The application has support for J2ME and Android

phones as well as tablets. CommCareHQ also provides programmatic

APIs to access data and data feeds that actively notify external systems

such as MOTECH of incoming information [16]. As part of the work of this

thesis we developed a generalized CommCare interoperability module for

the MOTECH platform to communicate and exchange data with

CommCareHQ.

CommCareHQ is a form based data collection server that provides

users with the ability to design forms through a graphical user interface,

deploy forms to mobile phones and tablets and generate reports based on

form submissions. CommCareHQ's foremost feature is the capability to

deploy XForms that are based on the JavaRosa specification to mobile

devices using Android as the preferred operating system. A mobile worker

logs in to CommCare on their phone or tablet to fill out forms that are

submitted to the server or saved locally on the phone for later submission.

CommCareHQ acts as a data repository storing longitudinal “case” data

from these forms that is persisted and altered through the natural course

18

of a use case. CommCare is not the only mobile form data collection tool;

other open source projects such as Open Data Kit (ODK) allow Xform

submission without a similar longitudinal case model [34].

The work flow for a typical CommCare use case is as follows: a

form is submitted through a mobile phone or tablet, which creates, alters

or closes a case, then CommCareHQ notifies external systems of these

form submissions as well as any of the changes to the case. For example,

a pregnancy case begins with a registration, continues with visits, and

concludes with a birth or termination of the pregnancy. In this data model

the case is the uniquely identifying feature rather than a particular patient

or individual. Patient identifiers can be included in the case or forms as an

arbitrarily named data element, for example, health_id was used in the

Ethiopia implementation's pregnancy registration forms. Figures 2.5 and

2.6 are screen shots of the Ethiopia project's pregnancy application that

were taken in an Android emulator running CommCare 2.0.

19

Figure 2.5: CommCare user login screen shot

20

Figure 2.6: Pregnancy form emergency signs list screen shot

21

2.3.2 - CommCare's Case data model

CommCareHQ's data model is based on the notion of a “case” that

lasts for the duration of the logical use case, such as for the duration of a

pregnancy. CommCareHQ's case model is an XML specification,

illustrated in Figure 2.7.

Figure 2.7: CommCare Case specification

The case block encapsulates several other data elements and

22

operations that are applied to the case, such as creating a case or

updating a case. A uniquely identifying case id is part of every case. All

cases must begin at some point with a create element. The update

element allows a form to update the case information such as case type,

add arbitrary case attributes such as “EDD”, or update a preexisting case

attribute. The close element contains no data and instructs the case to be

set to closed. Index elements are for opening referrals or sub cases

related to the case.

The case model distinguishes CommCare's data model from other

simple survey tools because its fields are persisted across multiple form

submissions. Each form acts as an entry point of data into the case and

all of the fields persist throughout the case's duration. The fields may be

updated by form submissions and the new value will continue through the

case's life cycle. These case variables can be used to make decisions for

future questions in the same form or future forms.

2.4 - OpenMRS

OpenMRS is an open-source medical record system primarily used

in developing countries to target health care needs and delivery for

medical practitioners. OpenMRS's data model supports many of the

common health care notions: patients, medical providers, medical

encounters such as a visit or surgery, along with medical observations

that record medical or other data about a patient. OpenMRS also provides

the ability to define a medical concept dictionary to support observation

23

data. Figure 2.8 is a screen shot of one of the concepts in OpenMRS used

in the pilot project. During the work of this thesis, we utilized OpenMRS as

a back-end data store for our medical information collected from

CommCareHQ forms [17].

Figure 2.9: Example OpenMRS medical concept from a medical dictionary

2.4.1 - EAV

OpenMRS uses an entity-attribute-value (EAV) data model for

many of its entities. The EAV model describes attributes of entities that

have potentially many possible values but typically will only have a subset

of these values [18]. An example of the EAV data model in OpenMRS is

24

the patient entity, which developers and administrators can extend by

adding arbitrary attributes and values. Another example is the concept

dictionary which can grow arbitrarily large, but for any given observation

there is only one associated concept. For a full view of the OpenMRS data

model, see the link from reference 19.

2.4.2 - Providers

Providers represent individuals involved in the health care delivery

process. OpenMRS models providers as person entities that are given the

role of provider within the OpenMRS system. Each medical encounter

within OpenMRS requires that a provider was involved in the process.

Providers as an entity play a key role in the Ethiopia implementation and

as part of the work of this thesis we addressed the management of

provider data and identity between CommCareHQ, OpenMRS and

MOTECH.

2.4.3 - Locations

Locations in OpenMRS are physical places where patients may be

visited by a health provider. A client of OpenMRS might also store

geographical regions as a location, such as the state of Maine or the city

of Portland. Locations may also be hierarchical: Portland resides within

the county of Cumberland which is contained by the state of Maine.

Locations play a key role in our mapping of data between CommCareHQ

and OpenMRS.

25

2.5 - Interoperability between software systems

An increasing number of software systems need to support

methods to communicate information with other external systems.

Interoperability has been described as: “The capability to communicate,

execute programs, or transfer data among various functional units in a

manner that requires the user to have little or no knowledge of the unique

characteristics of those units” [20]. Interoperability is an important

research area of computer science and it is estimated that inadequate

interoperability within U.S. Facilities costs $15.8 billion per year. Lack of

interoperability often leads to the duplication or re-development of

equivalent features and can lead to monopolies or market failure. There is

a greater push for interoperability in the Open-source community by

promoting and adopting well understood and open standards. From a

health systems perspective, there is a growing desire for interoperability

between facilities and even between health devices used by patients.

However, competition often has encouraged inter-compatibility within a

vendor's own products and the biomedical industry is still in the early

stages of fostering and developing true interoperability between health

technologies [20].

Interoperability comes in different forms, including syntactic

interoperability and semantic interoperability. Syntactic interoperability is

the ability of two or more systems to communicate and exchange data.

Standards including XML, SQL and JSON help facilitate this process.

26

Syntactic interoperability is a necessary precursor to achieving semantic

interoperability. Semantic interoperability is the ability of two or more

systems to exchange and interpret meaningful information that can be

used to generate useful results. In order to achieve semantic

interoperability, both systems often have to share a common information

model or standard that allows for mapping between concepts. A common

example of semantic interoperability in health systems is when two

systems are able to communicate and map between health concepts. As

part of the work of this thesis, we explored syntactic interoperability

between MOTECH and other systems. Semantic interoperability was also

investigated but currently none of the external systems communicating

with MOTECH exchange well defined semantic information [20].

Interoperability between systems can be implemented in a number

of different ways, including across various protocols such as HTTP or

FTP. Communication between two systems can be as simple as

transferring a file across FTP or it may be facilitated through a complex

system of web services protected with sophisticated security and code

contracts. There is a large body of research on the integration of software,

including the integration of enterprise systems. This body of research

helped inform the design of our architecture when interoperating within

our own enterprise (MOTECH) and with other systems such as

CommCareHQ and OpenMRS.

27

2.6 - Mismatch between data models

Software systems often experience incompatible data models when

interacting with other systems or technologies. One of the more well

known areas of research in data integration is the object-relational

impedance mismatch that occurs between object-oriented programming

languages and relational databases. Another major area of research is in

enterprise information integration, where there is a unified view of the data

across a software enterprise [21]. During the course of this thesis, we

investigated enterprise information integration between the domain

models of CommCareHQ, MOTECH and OpenMRS [22]. These domains

each had their own validation constraints, data formats and identity for

data entities.

Enterprise information integration attempts to solve many problems

related to integrating disparate systems, such as different persistence

strategies, different formats or interpretation of the data and different

identifying characteristics of entities. One common approach to integrating

these external systems is to utilize a practice known as data

transformation. In data transformation, data from an incoming source is

converted to a different format for the target system. The crucial step for

the data transformation is the data mapping stage, where an algorithm is

used to map input data elements in a consistent way to the output source

[23]. Technologies such as XLST follow this pattern of data

transformation, whereby an XML document is converted into a different

XML document or other data type such as an HTML file.

28

Data integration across systems in an enterprise architecture

allows systems to stay uncoupled from one another while communicating

and exchanging data. When systems such as CommCareHQ and

OpenMRS do not directly communicate with one another, mediators such

as MOTECH can communicate with each individually and act as a

messaging mediator that helps wire the systems together in a unified way.

2.7 - OpenHIE

Other health organizations have been attempting to solve many of

the problems facing MOTECH. Our project's solutions were informed by

these efforts and the MOTECH platform may make use of technologies

developed by these groups. MOTECH has already leveraged other

systems such as OpenMRS and CommCareHQ to offload much of the

burden of development and responsibility to groups that specialize and

have expertise in various health information domains.

One major effort in the open-source health information domain is

the Open Health Information Exchange (OpenHIE) project. The OpenHIE

project aims to provide a sophisticated medical record system that

includes repositories for a variety of health care entities, including

facilities, patients, providers, medical terminology and health records. The

OpenHIE project began to support the Rwanda Health Enterprise

Architecture (RHEA) project, an electronic medical record system for

primary and secondary care. The exchange provides a re-usable

framework for other projects to utilize to meet their health information

29

needs. The architecture consists of an enterprise master patient index

(EMPI) or client registry, a health provider registry, a health facility registry,

a health terminology service, a shared health record, a health

interoperability layer and any point of service applications that interact

with the OpenHIE framework [24].

Figure 2.9: OpenHIE Architecture [25]

Each component of the OpenHIE architecture is driven by its own

development process that together form a community of projects spanning

multiple organizations. For example, the master patient index component

30

is currently implemented by the OpenEMPI project, which has already

been successfully deployed in Rwanda. The OpenEMPI project can

perform its functions as a patient index as a stand alone application but

will fit within the OpenHIE ecosystem as one potential piece of

functionality found in the health IT domain [26]. Another project that

implements a component of the OpenHIE architecture is the iHRIS Suite

that tracks and manages health providers. The iHRIS project is further

broken down into more focused applications, such as iHRIS Manage,

which supports Ministry of Health and service delivery organizations in

their tracking and management of health workers. Other applications

include iHRIS Qualify, iHRIS Plan, iHRIS Retain and iHRIS Train, each

adding prospective functionality to a project, such as tracking health

worker training, planning and cost retention, predictive modeling tools and

database management of registered and licensed health professionals

[27].

The Rwanda Health Enterprise Architecture (RHEA) project is an

implementation of the OpenHIE architecture and serves as a real world

pilot to evaluate the success of a country level electronic health

information system using a health information exchange. The project

focuses on maternal health care delivery in Rwanda and provides support

for maternal health as well as helps identify and define appropriate

standards, functional requirements and interoperability needs across

several business and foundational domains. RHEA contains all of the

layers that are specified in the OpenHIE architecture by using a shared

31

health record, client registry, provider registry, health facility registry,

terminology service, health information mediator and point of service

applications such as OpenMRS and RapidSMS [28].

2.7.1 - Potential OpenHIE-MOTECH Interoperability

The MOTECH project is primarily focused on providing support for

health IT related use cases in developing countries. Many of the

requirements MOTECH faces overlap with the functionality the OpenHIE

project plans to provide. Interoperability between MOTECH and OpenHIE

could reduce the development work for MOTECH and leverage other

open source projects that are focused on providing in depth support and

expertise for specific health IT features (patient index, terminology

service, facility registry, etc). The MOTECH road map includes eventual

interoperability support for extending the system from below so that

implementers can define their data models as well as interoperate with the

external data models of other systems such as OpenHIE.

The OpenHIE effort helped inform some of the design in our

provider and location repository modules described in later chapters. As

part of this thesis, we explored the development of basic interoperability

repositories within MOTECH that would maintain, track and convert

entities between different open source systems such as CommCareHQ

and OpenMRS.

32

III. IMPLEMENTATION AND

METHODOLOGY

3.1 - Collaborative Ethiopia Pilot Project

During the work of this thesis we have successfully designed,

implemented and deployed a pilot project in Ethiopia in collaboration with

Andy Kanter from Columbia University. The project has consisted of

several “phases” in which a subset of overall pilot requirements are

implemented. We have been part of three phases of the project: 1B, 1C

and 1D. Phases 1B and 1C were completed and deployed in Ethiopia

and project funding has delayed the deployment of phase 1D. In order to

meet project requirements we needed to develop new functionality and

extend the MOTECH architecture. During this process we came across

fundamental challenges and gaps in the existing MOTECH system. The

details of these challenges and our solutions are described in the

following sections.

3.1.1 - Phase 1B

The 1B phase of the Ethiopia project focused on indicator reporting

for individual facilities spread across four woredas (a district-like

geographical location). Health workers assigned to reporting for their

facility are supposed to submit one health indicator report per week that

consists of various aggregate health data such as number of births,

33

deaths, and other morbidity indicators. At the end of each week an e-mail

is dispatched to regional supervisors that lists the health facilities that did

not receive a report that week in addition to the date of the last report from

each facility. To support requirements for phase 1B we extended

MOTECH with a new module to interoperate with CommCare and an

Ethiopia-1B module for implementation specific code.

Figure 3.1: Ethiopia phase 1B Architecture

The MOTECH architecture was extended with an additional

34

Ethiopia-1B module with the primary purpose of maintaining a list of

health facilities and alerting supervisors at week's end. Alerts are

dispatched for facilities that have not had an assigned health extension

worker submit an indicator report for the previous week. The Ethiopia-1B

module primarily utilizes services being provided by the CommCare

module within the platform. The schedule tracking module was also

leveraged with future customizable reporting schedules in mind.

Phase 1B uses e-mail notifications to supervisors to inform them

about the adherence of regional health facilities that are scheduled to

submit weekly indicator reports. MOTECH's event system was utilized to

generate non-compliance events for health facilities when a form had not

been submitted for that week. These events were aggregated by region

and used to construct each regional e-mail at week's end. E-mail

messaging is not a native feature to the MOTECH platform so functionality

was added to the 1B module to support this requirement. Since the work

performed for the implementation, the MOTECH platform has added basic

e-mail functionality.

35

3.1.2 - Phase 1C

The 1C phase of the project focuses on individual level data

collection for pregnant mothers and their children. We were given health

forms from a Millenium Villages Project (MVP) in Kenya to use as a proof

of concept for this phase [29]. We utilized three different forms that were

designed on CommCareHQ: a pregnancy registration form, pregnancy

visit form, and child registration form. When each type of form is submitted

to CommCareHQ from a mobile device or tablet, MOTECH is notified of

the submission and maps the health information into an OpenMRS server.

A “nice to have” feature also requested was to push OpenMRS changes

back into CommCare's case model. During the work of this thesis we

extended MOTECH's architecture with new modules to support a mapping

process between CommcareHQ and OpenMRS.

36

Figure 3.2: Ethiopia phase 1C architecture

37

In order to shuttle CommCare form data data into OpenMRS, we

developed a new mapping module specifically to transform XForm data

into MOTECH's medical record terminology entities by utilizing a

declarative mapping process. The details of this mapping process are

described in section 3.3. We also developed a module to transform

OpenMRS medical events into case update actions to update the

corresponding case information on CommCareHQ. Instead of using the

same module, a separate and independent mapping module was

developed to transform medical data, such as an observation update, into

an XForm that is programmatically generated and submitted to

CommCareHQ automatically.

3.1.3 - Phase 1D

The 1D phase of the Ethiopia implementation expands the

requirements of the project to include messaging and alerting based on

actionable health events and outcomes. We have identified two

approaches for fulfilling these requirements within the MOTECH system:

custom code that extends the MOTECH architecture and using the task

module's graphical interface to wire together predetermined triggers and

actions. The task module is described in section 4.3.2.

Examples of messaging requirements

In Phase 1D of the Ethiopia project, messages are sent out to

patients and providers based on actionable medical data. Below are a few

38

examples of messaging requirements for the project:

1. Weekly ANC Reminder

MOTECH should construct a list of all pregnant women that are assigned
to a particular health worker in their 2nd or 3rd trimester of pregnancy who
haven't had an ANC visit in the last 5 weeks. This is used to alert the
health workers.

2. Birth registration of a child under 28 days

When a new birth form comes in an immediate message is sent to the
health worker as a reminder for the child to receive their initial neonatal visit.
Six days later, if the child has not received the initial neonatal visit, a follow up
message is sent requesting they receive a visit. If a child is HIV exposed, an
appointment is created for six weeks after the date of birth. The messages
should also be sent to the mother if her mobile number is available.

3. Still birth

If the result of a pregnancy was a still birth the health worker is prompted
to follow up on the mother one week later.

During the course of this thesis we successfully developed and

deployed the 1B and 1C MOTECH based software. During the

implementation of these project phases, three key challenges stood out

from the rest: interoperating with external systems, transforming data

between domain models and brokering identity between systems. Figure

3.3 gives a full picture of the architecture that we adopted to address

these challenges.

39

Figure 3.3: Interoperability overview

The above is an architectural diagram that illustrates the

components needed to achieve interoperability between CommCareHQ,

40

MOTECH and OpenMRS. The solutions to the three major challenges are

all represented in the diagram: the identity broker module used to manage

and link the identity of providers between systems, a CommCare module

to establish communication between MOTECH and CommCareHQ and a

mapper module that transforms incoming CommCare form data into

medical record system data for OpenMRS. All of these new components

were developed to extend the MOTECH platform. The remainder of this

chapter details the approach we adopted for addressing these three

challenges.

3.2 - MOTECH's interoperability with other systems

MOTECH interoperates with several other external systems,

including OpenMRS, CommCareHQ, Verboice (an IVR provider) and

others. During the course of this thesis, we explored and enhanced the

interoperability between MOTECH, CommCareHQ and OpenMRS,

focusing on access to these systems through their web APIs and mapping

data between each. In order to communicate with CommCareHQ, a

CommCare interoperability module was developed for the MOTECH

platform. Development of the module was informed by several software

integration patterns, including Polling Consumer, Publish-Subscribe

Channel and Selective Consumer [15].

41

Figure 3.4: CommCare module features

Previous to this work, the MOTECH platform did not include any

support for interoperability with CommCareHQ. A MOTECH

implementation in Karnataka did interact with CommcareHQ, albeit in an

implementation specific fashion through the use of its own custom

modules. The code from the Karnataka project was generalized and

enhanced to produce a new module that resides in the MOTECH platform

that is devoted to interacting with CommCareHQ's APIs as well as its data

feeds. Figure 3.4 illustrates the feeds and web APIs the module was

developed to initially support.

MOTECH receives real time data notifications from CommCare's

42

data feeds. This interaction is implemented using the Publish-Subscribe

Channel integration pattern. The MOTECH modules that follow this

integration pattern are passive and become active upon an external

system sending data via an HTTP request. Since these notifications vary

from system to system, each module is responsible for handling the

incoming request and taking some action as a result. The CommCare

module provides an HTTP end point that CommCareHQ sends a request

to. The CommCare module raises an event upon receipt of the incoming

data, which is then handled by any interested listeners in MOTECH.

MOTECH's event listener system is utilized during the process of

active notifications from CommCareHQ. MOTECH's event listeners are

implemented using the Selective Consumer integration pattern. The

Selective Consumer pattern allows interested pieces of software to

specify the messages and data they are interested in receiving; in

MOTECH's case these are specific events keyed by their subject. The

combination of the Publish-Subscribe Channel and Selective Consumer

patterns allows interested MOTECH modules, such as the mapper

module, to be aware of and receive specific data from external systems

[15]. Figures 3.5 and 3.6 illustrate active notifications made by

CommCareHQ and two IVR providers supported by the MOTECH

platform.

43

Figure 3.5: Active notifications from CommCareHQ

Figure 3.6: Active notifications by IVR providers

44

When CommCareHQ receives a form that has been submitted by a

health extension worker using their mobile phone or tablet, a “stub”

containing the id of the form is generated and forwarded to MOTECH (and

any other URLs that have been configured to receive the form stub data

feed). Once MOTECH receives the stub, an internal event is generated

with the accompanying form id information. A mapping module that was

developed to extend the MOTECH architecture listens on these events

and then retrieves the form data from the forms web API exposed by

CommCareHQ. Once the form is retrieved, MOTECH maps this data into

medical terminology and uploads the information into an OpenMRS

server.

3.3 - Data mismatch and data mapping

Managing the flow of information between CommCare, OpenMRS

and MOTECH was a significant challenge in this thesis work. The

MOTECH platform has modules to interoperate with both OpenMRS and

CommCareHQ. However, OpenMRS and CommCareHQ have no way to

directly interoperate and their data models are very different. The

CommCare data model is relatively free form and has few constraints

while OpenMRS has a relational medical record system with well defined

entities and enforced constraints. This data mismatch necessitated that

we develop a mapper module for transforming data between medical

record data and CommCare's case model. The mapper module is able to

45

receive CommCare form data from the CommCare interoperability

module. Declarative specification provides the rules for transforming form

data into medical record terminology. Figure 3.7 outlines the overall

mapping process.

Figure 3.7: Flow of data during mapping

The entry point to the mapping process starts with MOTECH

receiving a form stub indicating a new form has arrived and this in turn

raises an internal MOTECH event that includes the id of the form. The

CommCare to OpenMRS mapping module listens for this event and

retrieves the corresponding form from CommCareHQ. MOTECH consults

the database for a corresponding mapping configuration for the form to

determine if it will be mapped into MRS entities or not. If a mapping

configuration is found for the form, the data is converted into medical

record data and uploaded to OpenMRS through MOTECH's OpenMRS

web services module.

The CommCare module provides the form data to the mapper

46

module which then retrieves the mapping configuration. The mapping

configuration is used to instruct the mapper to convert its data into

medical record system entities. The mapper module uses the OpenMRS

module to upload these entities into OpenMRS. We made use of the Data

Mapper, Mapper and Metadata Mapping software integration patterns to

implement the mapper module [32]. The Data Mapper pattern is a layer of

mappers that moves data between objects and a database while keeping

them independent of each other as well as the mapper. The Mapper

pattern is an object that sets up and manages communication between

two independent objects while keeping them uncoupled. Metadata

Mapping provides the details of mapping data between objects or a

database by using metadata configuration. The use of these enterprise

design patterns allowed us to design a generalized and extensible mapper

module that can be used by a variety of different implementations.

3.3.1 - Mapping configurations and activities

Mapping configurations are broken down into a list of “activities”

which represent a particular medical record use case or operation found

within the OpenMRS electronic health system. For example, registering a

new patient or adding a new encounter are each considered an activity.

There are currently two activities supported by the mapping module but it

can be extended to provide other activities such as drug orders. Any

number of registration and encounter activities, in an arbitrary order, may

47

be defined in a mapping definition. For example, a mapping configuration

could create two patient registrations and two encounters from a single

form, which may represent a mother and child patient registration and a

medical encounter for each. Figure 3.8 is an illustration of the mapping

specification for a pregnancy registration form used during the Ethiopia

implementation.

Figure 3.8: Pregnancy registration mapping configuration

48

The above mapping is divided into two key activities: a registration

activity and an encounter activity. Both of these activities are applied

against a single form. Each activity is an atomic operation that occurs

within OpenMRS. The rest of this section describes each piece of the

mapping configuration in Figure 3.8.

Registration activities represent a patient registration or patient

information update operation within OpenMRS. A registration activity

contains four different fields: an id scheme, a facility scheme, static

mappings and mapping values that come from the form instance's patient

data. The purpose of an id scheme is to specify the manner in which the

MOTECH mapping module discovers the identity of an entity. Currently, id

schemes include using a field from the patient or facility ID in the form, a

case variable on CommCare, and using a custom attribute that is part of

the CommCare web user's data. In the Figure 3.8 the “default” scheme is

used with the field name “health_id” to instruct the mapping module that

the patient's id should be taken from the field named health_id that is

located within the CommCare form instance. An alternative scheme used

is the CommCare scheme, which queries for the case information on

CommCareHQ and uses a case field, such as patient ID. This scheme

was necessary to support the pregnancy visit forms that do not include the

patient's health id in the fields of the visit form. Visit forms cannot be

selected without prior registering the patient, ensuring that there is always

a health_id populated in the case for the visit form mapping process.

49

The facility scheme likewise is similar in nature to the patient id

scheme in that it is used to determine where the facility identifying

information should be obtained from. In the above example, the

CommCare user scheme is specified, which instructs MOTECH to look up

the user that submitted the form on CommCareHQ and check a custom

field named “location”. The module uses this location name to map to an

OpenMRS facility name.

Static mappings represent data that should be mapped into

OpenMRS that is not included in a form or a case field. This mapping

functionality was required to support the preexisting Sauri forms we were

given to model our phase 1C proof of concept. In the Sauri forms the

gender of a pregnant mother is implied, however this information is not

part of the form or case and the mapper makes no assumptions regarding

the nature of each particular form it receives. This required the mapping

specification to include a static mapping of female for its gender,

instructing the mapper to use female as the gender for the patient of every

pregnancy registration form that arrives.

Registration mappings determine which field names from the form

the relevant registration information is retrieved from. In the above

example the registration form has a field “dob_calc” and this value is used

for the patient's date of birth in OpenMRS. These field values come from

each individual form instance and can support any data type that

OpenMRS supports.

Encounter activities share some similarities with registration

50

activities: an encounter activity also has a patient id scheme and facility

scheme to determine the OpenMRS patient and facility to use during the

mapping process. These activities also include an encounter type to

specify the type of encounter in OpenMRS. The main body of these

mappings is found in the observation mappings list, for example, the visit

form uses ten different observation mappings.

The mapping module provides a way to map incoming form data

into medical observations that are linked to a well defined concept

dictionary. Observations within an encounter activity are mapped one by

one and can vary by their data type as well as the strategy used to link the

concept to the OpenMRS concept dictionary. A typical observation

mapping requires the observation name and the element name that the

value will be obtained from. For example, in the registration form the

element edd_calc is mapped to an OpenMRS observation of

“ESTIMATED DATE OF CONFINEMENT” (an equivalent of EDD). In

addition to mapping by element name, observation mappings also support

mapping by a concept id. For example, when an observation mapping is

specified by concept id rather than field name, the mapper will look at the

form for an element that has concept id “5596” as an attribute of an

element in the form. This allows the designer of the form to not have to

worry about XML element names and provides a standard for mapping

concepts into OpenMRS. Below is an example XML element utilizing the

concept_id attribute that is taken from payload of an individual form

submission:

51

<edd concept_id="5596">2013-05-06</edd>

The element's name is “edd” however, the mapper does not require any

knowledge of the element name and the name can be changed to

something else entirely as long as it continues to include a concept id

attribute.

In addition to mapping field names, the values of an observation do

not always map nicely from CommCare to OpenMRS and observation

mappings are sometimes needed to map the values. The observation

mapping process has a few strategies for mapping values, including

whether the data is found in a list, whether the form's value needs to be

transformed into a coded answer for OpenMRS or whether to use default

behavior for mapping. When an observation is mapped the default

behavior of the mapper will take the literal value of the element unless

otherwise specified. For the EDD value mapping, the date value does not

need to be mapped because the form already stores a date in a format

that OpenMRS accepts. However this is not always the case for many of

the form's values. When the values are not compatible with OpenMRS,

they must be translated to a coded answer that is applicable to the

corresponding concept. Figure 3.9 is an illustration of mapping values in

the form to coded answers in OpenMRS:

52

Figure 3.9: Observation value mapping

The CommCare form uses the values “emergency”, “basic” and

“convenient” when populating the answer for the form element

“referral_type”, but these values are meaningless to the OpenMRS

concept dictionary so they must be mapped to a coded answer such as

“Emergency (status)”.

Since we cannot anticipate all future mapping requirements, we

have designed the mapping module to support an arbitrary number and

combination of activities and made it easily extensible so other activity

types can be added when the need arises. Currently registrations and

encounters are supported but OpenMRS has other notions of medical

actions such as drug orders. We believe the current mapping module

could be easily extended to support other activities.

53

3.3.2 - Mapping from OpenMRS into CommCare

While mapping data from CommCare forms into OpenMRS was a

primary project requirement, mapping data in the reverse direction, from

OpenMRS back to CommCare was a secondary requirement for when the

project moves forward. We utilized a similar mapping process between

the two systems with MOTECH acting as a mapping mediator. By polling

the atom feed OpenMRS offers we could view changes to entities such as

encounters and then construct the necessary case XML needed to update

the case within CommCareHQ. Figure 3.10 is a diagram outlining this

process.

54

Figure 3.10: CommCareHQ to OpenMRS mapping architecture

55

Polling an external system such as OpenMRS is one well known

process pattern used for obtaining new data within a modular or federated

architecture [15, 31]. Polling consists of sending a request for data at a

regular interval determined by the requesting system or subsystem.

MOTECH leverages the polling pattern to discover updates to entities

within OpenMRS. OpenMRS provides access to these updates through

the optional addition of an atom feed module. Once installed, the atom

feed module will publish these changes to an interface that can be

accessed through HTTP requests.

Figure 3.11: Example OpenMRS atom feed data

Figure 3.11 shows an example of the OpenMRS atom feed log.

MOTECH accesses this log at a configurable interval, such as once per

minute, hour or day. The atom feed module within MOTECH will then

parse this information and raise corresponding internal events that can be

listened on by interested modules. The OpenMRS to CommCare mapping

module we developed listens on these events and uploads case

56

information to CommCareHQ to alter the patient's case data.

3.4 - Identity brokering

The third key challenge identified and addressed as part of the

thesis work was the management of entity identity across systems.

Provider and location repositories were developed to act as identity

brokers between systems. OpenMRS, MOTECH and CommCareHQ each

have different identifiers related to providers, locations, and any other

entities. The identity broker repository modules allowed for these systems

to interoperate on the same entities. The management of health care

providers (health systems workers) within the MOTECH suite for the

Ethiopia implementation will be used as an example use case throughout

this section. Figure 3.12 shows an overview to the identity brokering

process.

Figure 3.12: Provider identity brokering

57

Commcare, MOTECH and OpenMRS each have their own notion

of a medical provider, its identity and the various data fields associated

with that object. In CommCareHQ a provider is an individual who uses the

CommCare application for field operations. In OpenMRS providers are

represented by person entities that have been assigned the provider role.

The provider role represents nurses, doctors and any person involved with

delivering health care services to patients. MOTECH has its own

lightweight CouchDB implementation of a medical provider. Providers

between these systems don't necessarily match up in their data fields or

their validation constraints. For example, OpenMRS has particular

requirements for a person's demographic information that are enforced,

such as name and birth date. In CommCare there are no requirements for

a mobile worker so there cannot be a one to one mapping between the

two data models without a software piece orchestrating the mapping of

data between the two systems. In order to address some of these

challenges, a new provider repository module was developed to act as a

data mediator between systems.

Identifying information plays a key role during the process of data

transfer between systems. OpenMRS, MOTECH and CommCareHQ each

have their own id fields for their respective provider entities. When a

pregnancy form is filled out and uploaded to CommCareHQ, the provider

information is captured through a user ID field found in the form.

OpenMRS provider ids are internally generated by OpenMRS and a valid

58

provider is required for medical encounters in OpenMRS. By linking the

CommCare provider id and the OpenMRS provider id, the corresponding

provider in OpenMRS can be correctly chosen for the encounter from the

form.

The provider repository module extends preexisting infrastructure in

MOTECH and acts as a wrapper for MOTECH's provider services. The

module persists information related to identifiers for the provider found in

external systems such as OpenMRS. This allows MOTECH to create and

add to a list of identifiers related to the provider. Once a provider has been

linked together through this module, any time a form from CommCare or

an update from OpenMRS that refers to a provider that has been

registered in the MOTECH provider repository, MOTECH can seamlessly

access the corresponding provider in the other external system. A similar

approach was adopted for identity brokering with locations and facilities

between external systems. Figure 3.13 diagrams the process of identity

brokering.

59

Figure 3.13: Provider identity brokering details

60

IV. Discussion

Developing and deploying a MOTECH implementation has given us

insight into the advantages and some of the key challenges of working

with MOTECH as a software platform. In this section, we discuss some of

the advantages and challenges of working within a federated platform

architecture, the effort required to contribute to platform code from

implementation specific work, integration strategies the platform uses and

exception handling in a modular environment. We also analyze the

software coding burden for implementers and how MOTECH will attempt

to further alleviate this burden with future enhancements.

4.1 - Working within a platform architecture

Developing an implementation which uses a software platform such

as MOTECH provides many benefits as well as poses a few significant

challenges. Platform architectures and frameworks are designed to

support many implementations. The goal of most software frameworks is

to alleviate developers from the burden of having to implement lower level

features themselves [30]. Domain specific frameworks such as MOTECH

typically focus on alleviating the coding burden on implementers in one

particular domain, such as healthcare or finance. Other domain specific

frameworks include the IBM Financial Markets Framework, which

provides key capabilities required by almost every financial markets firm,

and the Cactus Framework that provides a problem-solving environment

designed for scientists and engineers [35,36]. In the case of MOTECH,

61

features include the implementation of scheduling, medical record, IVR

and other systems. By providing these capabilities as a generalized

software framework, MOTECH reduces the software coding burden for

implementations. The following section discusses the benefits and

shortcomings of our use of the MOTECH platform for realizing the

Ethiopia 1B and 1C implementations.

The MOTECH platform is a large software system that provides

many features for implementers to leverage. The benefits we gained from

this project include:

• An event-driven messaging architecture
• An OSGi modular framework that allows adding our own custom

modules
• Medical record system functionality
• CommCareHQ interoperability
• Scheduling support
• Web security
• Alerting functionality for future requirements (IVR, SMS)

The Ethiopia pilot project would have had to develop these features

from the ground up if the MOTECH platform had not been leveraged. Our

project saved significant development effort by using the MOTECH

platform and was also able to drive some of the platform's design and

evolution by reporting bugs and driving the need for new features within

MOTECH.

Working within a framework such as MOTECH can also present

challenges for an implementation. Some of these challenges include:

• Sometimes having to maintain a separate platform code base to
modify core platform behavior

62

• Unforseen changes in behavior or the addition of bugs in new
releases

• Upfront overhead in learning platform technologies such as OSGi

The two phases of the project we successfully built and deployed

required extending the MOTECH architecture to meet functional

requirements. The indicator reporting phase required that we develop a

CommCare interoperability module and a custom, project specific 1B

module for enrolling health extension workers and messaging supervisors.

For the individual data collection phase a new mapping module was

developed to transform data between CommCareHQ and OpenMRS.

Provider and location repository modules were also developed for identity

brokering between external systems.

We successfully developed and deployed two phases of a

significant research pilot in Ethiopia by leveraging the MOTECH platform.

Despite some of its shortcomings, we conclude that the benefits have

outweighed the challenges. We were able to successfully utilize and

extend the MOTECH architecture for our project. We saved significant

development time despite the additional modules and features that were

created during the work of this thesis.

The MOTECH platform's alleviation of the coding burden on

implementers can be enhanced and informed by implementations that

make use of the platform to achieve their project requirements. We used

and extended the MOTECH platform to meet real world requirements for

the Ethiopia pilot project. During the process of implementing the platform

we identified bugs and missing features within the platform that were later

63

fixed or added to the platform.

An extra level of analysis and design is required to generalize

project specific solutions. We generalized and added to implementation

specific CommCare code to develop the CommCare interoperability

module and add it into the platform. Since the CommCare module was

added to the platform, any implementation of MOTECH may now leverage

CommCare-MOTECH interoperability. The mapping module we

developed during the course of this thesis also saw use and enhancement

from another implementation team in Bihar, India that makes use of the

MOTECH platform.

Developing generalized solutions for the platform takes more time

than the development of a specific solution. The time spent developing

generalized solutions was approximately two or three times the effort that

would have been needed for a specific solution. However, this extra

development effort improves future maintenance of the project and saves

development effort for all future implementations. The more general the

solution, the more time may be saved, as there are instances where an

implementor may have to modify the platform's code and spend

development effort on maintaining a separate branch of the main platform.

Implementations using a software platform with real world requirements

can help discover bugs, missing features, and prioritize development. We

believe that implementations of MOTECH should be the drivers behind

future development efforts.

64

4.2 - The design challenges and opportunities for federated
systems

Software systems often interoperate with other external systems to

save development time and leverage the strengths of another software

development's effort. The MOTECH platform can be run as a monolithic,

stand-alone application that does not interoperate with other software

systems, however, most health information use cases would make use of

other software platforms such as CommCareHQ or OpenMRS. The

Ethiopia pilot project developed during the course of this thesis utilized

both CommCareHQ and OpenMRS. When interoperating with these

systems, MOTECH resides within a federated architecture where it

depends on outside systems to perform vital operations. In this federated

architecture, CommCareHQ provides data collection capabilities,

OpenMRS provides a full-fledged medical record system and MOTECH

acts as a messaging and scheduling framework that helps broker and

manage incoming and outgoing data between the various systems. The

MOTECH platform is able to save significant time and development by

leveraging the strengths and significant development effort already put

into these other software systems. In the following section, we describe

some of our integration strategies for achieving a federated architecture.

4.2.1 - Interoperability Integration Strategies

MOTECH interoperates with several external systems, including

OpenMRS, CommCare, various IVR and SMS providers, CouchDB,

ActiveMQ and others. In order to communicate with each of these

65

systems, several different integration strategies have been employed:

polling an external feed, listening for active notifications, querying a web

API, embedding an external library, communicating with a broker through

JMS channels, and providing RESTful web services for outside systems

to interact with Motech [15]. In the following sections we describe a few of

these strategies as well as potential strengths and weaknesses for each

that we have identified.

Polling an external feed provides two main advantages: it allows for

the specified timing and scheduling of polling to reside within MOTECH

and for recovery in the event the data could not be read. MOTECH can

choose when to poll for data within OpenMRS, which publishes its events

to the feed in real time. This might entail that data is processed only at

night or during lower load periods but leaves open the opportunity for real

time polling as well. In the event that reading the data fails, MOTECH can

also be modified to control its own retry mechanism, unlike active

notification systems where the control of exceptional behavior and retries

lies with the external system.

Solving the technical issues of establishing communication with

polling is not sufficient though and ambiguous or cyclical notifications

between external systems still needed to be addressed. The atom feed

module in OpenMRS notifies subscribers of the underlying changes to

each instance of an object in its database. In practice, an observation may

be updated to reflect a revision to its value and the client (MOTECH) only

cares that a single, previously existing observation has been updated.

66

However, in OpenMRS an updated observation consists of a new

observation object with the updated value accompanied by an update and

void of the previous observation. The atom feed will publish each of these

changes as an atomic event. MOTECH then has the burden of trying to

understand these changes. Currently MOTECH does not have a way of

identifying when an observation is actually new or has instead only been

updated, since both actions within OpenMRS will result in a freshly

created observation object.

The second complication that arose was the possibility of cyclical

updates between CommCare and OpenMRS if two-way mapping is used

in MOTECH. The atom feed from OpenMRS has no way of notifying

subscribers of where each update to the database originated (such as

from the OpenMRS user interface or the web services module). This

presents a problem for the two way mapping process because

CommCare data is uploaded to OpenMRS through its web services and

these OpenMRS changes can be pushed back to CommCare since they

are discovered within the atom feed notifications. For an interim solution

we make an assumption regarding the OpenMRS user that uploads data

from MOTECH's OpenMRS web services module. For example, if an

“admin” user or “motech” user is utilized by the web services module, then

any database operations originating from that user is assumed to have

come from CommCare and will not be mapped back from OpenMRS into

CommCare when the atom feed module publishes that event.

An active notification strategy is an alternative to polling and

67

provides the advantages of real time notifications as well as greater

scalability. It also comes with the disadvantage of losing control over the

handling of exceptional behavior and retry attempts. Notifications occur as

they are happening which removes the responsibility from MOTECH to

check at intervals for updates. MOTECH will require less processing and

less unnecessary web requests as a result of waiting for active

notifications. However, this exchange of responsibility of notification

places the handling of delivery failures or exceptional behavior on the

external system, which an implementation does not always have access

to or control over. For example, if CommCareHQ attempts to deliver a

form to MOTECH and the connection fails, CommCareHQ attempts retries

with exponential back off and eventually gives up. MOTECH developers

have no control over this retry logic or its interval. When MOTECH polls

for data, such as a form from CommCareHQ or changes in OpenMRS, the

MOTECH implementer has fine grained control over when and how often

to retry the data. The number of failed attempts and the time of failure can

also be stored on MOTECH's end when polling rather than using an active

notification strategy.

One other interoperability challenge faced was maintaining a data

entity such as a provider in two disparate repositories by keeping the data

synchronized between the two systems. If information regarding a

provider changes in OpenMRS or the web user information changes in

CommCareHQ, the changes should be synchronized. One method of

accomplishing this is choosing a particular repository to act as the master

68

of the information. The master of the data would always prevail when

there are conflicts between systems (such as phone number with the

OpenMRS provider and CommCare web user, which is used for alerting

the provider). Another alternative is that any change is propagated to the

other system immediately, therefore both repositories are acting as peers

with the latest change to an entity taking precedence over the older, stale

entity in the other system.

A current hurdle for peer to peer maintenance of providers is that

CommcareHQ does not send notifications when information has changed

for a mobile worker and there is no way to discover when his or her

information was last changed. This makes propagating changes as they

occur impossible, and a polling mechanism must be used to periodically

update the provider in OpenMRS. Figure 4.1 is an example diagram of

polling CommCareHQ periodically and updating provider information in

OpenMRS.

69

Figure 4.1: Synchronizing providers across systems

Translating information between disparate data models between

software systems is another interoperability challenge we encountered.

MOTECH's data model is based around traditional medical records with

key identifying attributes and first class fields such as name, birth date,

gender, etc. CommCare's case XML model offers the advantage of

tracking longitudinal data for a single use case over time but is a free form

data model that does not align with MOTECH's structured data model.

Part of the work during the thesis was aimed at solving this mismatch

between CommCare's data model and MOTECH's by developing a

mapper module that can translate the information between case XML and

70

medical record entities.

A major difference with the case XML model compared to

MOTECH's is that there isn't a specification for identifying information for

patients or locations. This identifying information may be added to the

case as an arbitrary attribute but is completely outside the scope of the

standard. The consuming client, in this case the MOTECH platform, must

manage the patient identity and ensure its uniqueness. If health id “12345”

was accidentally entered for two separate pregnancy cases, CommCare

would accept this as valid and allow two or more separate cases to be

opened with the same health id.

Another challenge faced with bridging these data models is that

CommCare's cases do not carry much semantic meaning other than a

container for a collection of forms and their attributes. Cases represent

encapsulated data for some event over time such as a pregnancy or a

vaccination schedule. MOTECH's medical record system can store the

time medical encounters and observations occur, however these are not

grouped into a “case” that delimits the data from other unrelated medical

record data associated with the patient. This difference can cause the

updating of data to be somewhat ambiguous because an updated case

element may be a revision of a mistake or what could be a completely

new medical observation. The best work around is to have an “update”

form separate from a “visit” form and to map these forms differently. An

update form can be for correcting case data that was incorrectly entered,

while a visit form can be considered new medical information.

71

4.2.2 - Error Handling in a Modular Environment

Software systems must have a way to handle and report

exceptional behavior, both from within and in their interoperation with

external systems. MOTECH currently employs a few different methods of

error handling which include the traditional throwing of exceptions,

redelivery of misfired events and the raising of exception events. Currently

there is little to no automated handling of or recovery from exceptional

behavior. In the following section we describe each strategy of raising

error notifications and propose an architecture for the MOTECH platform

moving forward.

The majority of MOTECH error handling is accomplished through

throwing Java exceptions. Some of the exceptions thrown go unhandled

and may even break functionality due to listener redelivery attempting to

redeliver an event that caused the exception. This can lead to the same

action being taken multiple times, such as several SMS messages sent

out from a single event listener that continues to throw exceptions.

Examples include throwing an exception when an attempt is made to

schedule a job with an execution time in the past or when communication

failures occur between HTTP end points.

An alternative method to alerting the system that exceptional

behavior has occurred is by raising MOTECH events with corresponding

information regarding the error. This information could include the time of

72

the exception, the offending module, the priority, and any informative data

related to the operation that caused the exception. Figure 4.2 illustrates

both methods of raising exception information within MOTECH.

Figure 4.2: Proposed MOTECH exception handling

MOTECH should eventually migrate to a fail-safe system for all of

its business logic using internally raised events that do not interrupt the

normal functioning of the platform. In addition to providing notification of

the error, each event would be given a priority. For example, some

exceptional behavior may cripple the system's capability to provide useful

functionality on a large scale, while other errors may be the result of a

73

single patient that has an erroneous phone number. In the case of the

former there needs to be immediate notification for any system

administrators. Each event should include the module that raised it, along

with the time and any pertinent information.

An event driven system for reporting errors allows any custom

module to have a hook into handling exceptional behavior in the system,

however, some complex exceptional behavior may need human

intervention. One example is as follows: a CommCare form arrives that

leads to several transactions, such as the creation of a patient and

encounter, as well as the enrollment into a schedule of care and a

message campaign. If that form is later archived and marked as

erroneous, other actions may have already been taken on the patient and

simply undoing the original changes may lead to a loss of correct data.

We propose that incoming data that leads to several transactions, such as

the example given here, has the corresponding transactions packaged

together as metadata and persisted for a period of time so that system

administrators could view all of the changes and objects related to the

form that has been marked as erroneous. This entails that when a user

searches for “CommCare form A for patient B”, they might see that the

form created an MRS patient, encounter, and enrolled the patient into two

different schedules of care. From this interface the administrator could

decide what actions are required for restoring data integrity.

74

4.3 - The software coding burden and the evolution of the

platform

The MOTECH platform currently requires significant custom coding

to support the requirements of real-world implementations. During the

course of the thesis, we had to write approximately 8000 lines of non-

platform code (~3500 for the 1B module, ~2500 for the mapper module

and ~2000 for the two identity broker modules) to support the current

requirements (this excludes the code we developed and submitted to the

platform, such as the CommCare interoperability module). If the project

moves forward toward implementing the messaging requirements of

phase 1D, the coding burden and testing burden would continue to

increase.

The goal of a software platform is to lessen the coding burden on

other developers by promoting re-use. The MOTECH platform significantly

reduced the total development time that would have been required to

support an enterprise software system implementation. We estimate that it

would take between two and three thousand developer hours of effort for

a new implementation that requires Ethiopia 1B and 1C functionality

without leveraging the platform. Going forward the platform aims to

continue to reduce the coding burden and for the most common use

cases, eliminate it entirely by providing UI features, a tasks module and a

user-defined data model tool called Seuss. The following sections briefly

describe these efforts as MOTECH continues to ease the coding burden

on implementations such as the one developed during the course of this

75

thesis.

4.3.1 - MOTECH UI

Throughout the duration of this thesis a MOTECH user interface

has been developed and enhanced. The MOTECH UI plays a crucial role

in the future of the project by allowing non-developers to setup, configure

and administer the MOTECH server, as well as add in custom functionality

for their own implementation. Figures 4.3 and 4.4 are screen shots

highlighting some of the UI's current features, including module

management and CommCare settings configuration. The long term goal

of the project is to provide an interface that allows implementations to be

created without the need of advanced developers and custom coding

solutions.

Figure 4.3: MOTECH UI for module management

76

Figure 4.4: MOTECH UI for CommCareHQ settings

4.3.2 - Tasks Module

The MOTECH project is attempting to further alleviate the coding

burden on implementers by providing a “tasks” module. The tasks module

allows implementers to specify behavior through triggers and actions

within a graphical user interface. A MOTECH module registers triggers

and actions through the tasks module by providing a declarative JSON

specification. Triggers are events within MOTECH with the ability to filter

on any of the accompanying payload information, as well as pulling in

77

extra data from “data providers” such medical record patients. Actions

receive the event if the conditions specified have been met and execute

some given behavior. An example is when a message campaign event is

raised and an SMS message is dispatched based upon the patient's

external ID and phone number. Figure 4.5 shows an example of creating a

task through the MOTECH UI.

Figure 4.5: Example UI design of a task

Currently the task module only supports very basic features of

wiring triggers and actions together. A goal of the MOTECH project is to

78

allow end users to wire up and execute a number of use cases solely

through a graphical interface. The 1D messaging scenarios described by

the Ethiopia implementation are currently not supported by the tasks

module. Enhancing the module to support the less complex use cases is

on the current road map of MOTECH.

4.3.3 - Seuss data model

Implementers that want to extend MOTECH's data model currently

must add custom modules with significant portion of the code related to

data management. Seuss is a major ongoing development effort of the

MOTECH project to create an extensible, user-defined data model that

allows for importing and exporting schemas that can be shared across

various implementations that fit into the MOTECH system seamlessly. The

Seuss data model may feature some of the identifier management

between external entities that this thesis tackled for the Ethiopia

implementation. Additionally, some of the semantic mismatches in data

may be alleviated by allowing users to hook into well known concept

dictionaries or other standards based data reference models. The Seuss

project is still in the initial design stage and did not impact the work of the

thesis, however, it stands as one of the main design changes in the

MOTECH platform going into the next year. Combined with the task

module, Seuss should further reduce the coding burden on prospective

implementations.

79

V. Conclusion

During the course of this thesis the MOTECH platform architecture

was extended to support a health information project in Ethiopia. We

successfully delivered and deployed two phases of the project in Ethiopia.

In order to meet project requirements we developed key modules that

extended and enhanced the MOTECH platform. A CommCare

interoperability module was developed for the platform, a custom module

was developed to support phase 1B requirements, a CommCareHQ-

MOTECH-OpenMRS data mapping module was developed to support 1C

requirements, and two identity broker modules were developed to support

the project going into the future. We also investigated strategies for

systems integration in the platform, the benefits and challenges of working

in a federated platform architecture, future improvements for reducing the

coding burden for implementations and error handling in a modular

environment. The above accomplishments gave us insight into both

implementing the MOTECH software platform as well as contributing to its

design and architecture for other groups to utilize for their health

information projects. MOTECH is an evolving software system which our

project and the work completed during this thesis have helped to inform its

design and architecture. The MOTECH platform has a bright future and

many of the changes contributed from the work during this thesis may see

use around the world for years to come.

80

References

[1] "Health Care System." Wikipedia. Wikimedia Foundation,
11 May 2013. Web.

[2] Loechel, Michael. "Electronic Health Records:
Implications for IMO State's Healthcare System."... State
Congress Business Forum, n.d. Web.

[3] "CDA® Release 2." HL7 Standards Product Brief -. N.p.,
n.d. Web.

[4] "How Mobile Phones Are Transforming Healthcare."
University of Cambridge, 21 Apr. 2011. Web.

[5] Pigadas, Vassilis, “Enabling Constant Monitoring of
Chronic Patient Using Android Smart Phones”, 2011 ACM, May
2011

[6] Smith, Alex D. "Mobile Health Offers Hope to Patients
in Africa." The Guardian. Bill and Melinda Gates
Foundation, 8 June 2011. Web.

[7] DeRenzi, Brian, “Improving Community Health Worker
Performance Through Automated SMS”, ICTD '12 Proceedings of
the Fifth International Conference on Information and
Communication Technologies and Development, ACM 2012

[8] "Cell Phones Can Help Under-Developed Countries Manage
Diabetes And Other Diseases." Medical News Today.
University of Michigan Health System, 17 May 2011. Web.

[9] Hwabamungu, Boroto, “M-Health adoption and
sustainability prognosis from a Care givers' and patients'
perspective”, SAICSIT '10 Proceedings of the 2010 Annual
Research Conference of the South African Institute of
Computer Scientists and Information Technologists, ACM 2010

[10] Sweeney, Chris. "How Text Messages Could Change Global
Healthcare." Popular Mechanics. N.p., 24 Oct. 2011. Web.

[11] "MOTECH - Mobile Technology for Community Health
(www.grameenfoundation.org)." Scribd. Grameen Foundation,
Mar. 2011. Web.

[12] Bruce MacLeod, Professor of Computer Science at the
University of Southern Maine and MOTECH architect

81

[13] "The OSGi Architecture." OSGi Alliance. N.p., 2013.
Web.

[14] Fowler, Martin. "Inversion of Control Containers and
the Dependency Injection Pattern." N.p., 23 Jan. 2004. Web.

[15] Hohpe, Gregor, and Bobby Woolf. Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging
Solutions. Boston: Addison-Wesley, 2004. Print.

[16] "CommCareHQ’s Documentation." CommCareHQ. Dimagi,
2013. Web.

[17] OpenMRS Community Wiki. 2013. Web.

[18] "Entity-attribute-value Model." Wikipedia. Wikimedia
Foundation, 17 Oct. 2013. Web.

[19] Direct link from text to domain model:
https://wiki.openmrs.org/download/attachments/589829/openmr
s_data_model_1.9.0.png

[20] "Interoperability." Wikipedia. Wikimedia Foundation,
11 Apr. 2013. Web.

[21] "Enterprise Information Integration." Wikipedia.
Wikimedia Foundation, 24 Oct. 2013. Web.

[22] "Data Mapping." Wikipedia. Wikimedia Foundation, 30
Sept. 2013. Web.

[23] "Data Transformation." Wikipedia. Wikimedia
Foundation, 27 May 2013. Web.

[24] OpenHIE Website. N.p., 2013. Web.

[25] "OpenHIE Architecture." OpenHIE. N.p., n.d. Web.

[26] "Open EMPI (Master Person/Patient Index)."
SourceForge. N.p., n.d. Web.

[27] "How IHRIS Benefits Countries." IHRIS: Free and Open
Health Workforce Information Solutions. N.p., n.d. Web.

[28] Chrichton, Ryan. "RHEA Phase 1." RHEA, n.d. Web.

[29] “Sauri, Kenya.” Millenium Villages. N.p. Web.

[30] "Software Framework." Wikipedia. Wikimedia Foundation,
11 Apr. 2013. Web.

82

https://wiki.openmrs.org/download/attachments/589829/openmrs_data_model_1.9.0.png
https://wiki.openmrs.org/download/attachments/589829/openmrs_data_model_1.9.0.png
http://en.wikipedia.org/wiki/Data_transformation
http://en.wikipedia.org/wiki/Data_mapping

[31] "Designing Polling of External Systems." Patterns for
Design Processes. Outsystems, n.d. Web.

[32] Fowler, Martin. Patterns of Enterprise Application
Architecture. Boston: Addison-Wesley, 2003. Print.

[33] Macleod B, … “The Architecture of a Software System
for Supporting Community-based Primary Health Care with
Mobile Technology: The Mobile Technology for Community
Health (MoTeCH) Initiative in Ghana.” Online J Public
Health Inform. 17 May 2012.

[34] Open Data Kit Website. N.p., 2013. Web.

[35] "New IBM Software Framework Helps Financial Markets
Manage Electronic Trading." IBM News Room. IBM, 23 June
210. Web.

[36] Cactus Code Website. N.p., 2013. Web.

83

http://www.ncbi.nlm.nih.gov/pubmed/23569631

	A Federated Architecture for Managing Health Information in Ethiopia
	Recommended Citation

	tmp.1437061485.pdf.HE2Y8

