
University of Southern Maine University of Southern Maine

USM Digital Commons USM Digital Commons

Thinking Matters Symposium Archive Student Scholarship

Spring 2017

Making Random - Cryptography and the Generation of Random Making Random - Cryptography and the Generation of Random

Sequences Sequences

Samuel Barton
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/thinking_matters

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Barton, Samuel, "Making Random - Cryptography and the Generation of Random Sequences" (2017).
Thinking Matters Symposium Archive. 64.
https://digitalcommons.usm.maine.edu/thinking_matters/64

This Poster Session is brought to you for free and open access by the Student Scholarship at USM Digital
Commons. It has been accepted for inclusion in Thinking Matters Symposium Archive by an authorized
administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

https://digitalcommons.usm.maine.edu/
https://digitalcommons.usm.maine.edu/thinking_matters
https://digitalcommons.usm.maine.edu/students
https://digitalcommons.usm.maine.edu/thinking_matters?utm_source=digitalcommons.usm.maine.edu%2Fthinking_matters%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.usm.maine.edu%2Fthinking_matters%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usm.maine.edu/thinking_matters/64?utm_source=digitalcommons.usm.maine.edu%2Fthinking_matters%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.fowler@maine.edu

Making Random — Cryptography and the Generation of Random Sequences

Samuel Barton, Dr. David Briggs
University of Southern Maine

Making Random — Cryptography and the Generation of Random Sequences

Samuel Barton, Dr. David Briggs
University of Southern Maine

Background

It is surprisingly difficult to efficiently create sequences of numbers mathematicians and scientists regard as random, either by processes in the world, or algorithmically in software, yet many
statistical experiments, cryptographic procedures, and computer games require randomly chosen values. The branch of cryptography dedicated to the generation of pseudorandom, or if
possible genuinely random, sequences arose to address the need for vast quantities of values that are as random as possible.

One example of where random numbers are needed is the creation of keys for secured, confidential
communication. The diagram to the right demonstrates this nicely. The protocol being shown there
is RSA, where two end users generate private keys using (hopefully) random numbers, and then
generate a public key using the key of a third party which both users have access to. The public
key, when combined with either users private key, can decrypt the message. If an attacker were to
determine the sequence of “random” numbers, then he or she might recreate the key and intercept
the messages, modify them, or impersonate either user.

User1 User2

Proxy

Attacker

How the Algorithm Works

The algorithm utilizes the behavior of modern operating systems to generate random bits by putting the process to sleep for 10 microseconds, and then comparing the actual number of
microseconds slept to the expected amount. The reason why this works for generating “random” bits is that modern operating systems do not wake processes exactly when they request.
This is due to process scheduling. The algorithm uses the randomness in actual sleep time to generate each bit.

The bits are not truly random, as if a person were able to force the algorithm to always execute, then we would not have random bits. The other way to break the algorithm
involves knowing absolutely everything about the system state and determining when a process would be woken up by the CPU scheduler. The bits generated by the algorithm will not
cycle like the mathematical methods, and so form a software-based source of highly pseudorandom values. If we could generate genuine random numbers using mathematical methods, then
we would never consider using a function like this which can at best generate 105 bits

second, which is 10,000 times slower than the mathematical methods. Unfortunately, we cannot create truly
random sequences using deterministic functions, i.e. functions that will generate the same results given the same inputs.

Testing

In order to validate the randomness the bits generated by the algorithm I ran three statistical tests against data produced by the algorithm. These tests come from Donald E. Knuth’s book
The Art of Computer Programming — Volume 2: Seminumerical Algorithms.

χ2 Test

The first test I ran the algorithm against is the χ2 test, where I generated 20 random bits
with my algorithm and then summed them. This is analogous to flipping a coin 20 times.
The probability distribution to compare to is the binomial distribution. With 20 degrees
of freedom, we expect the χ2 value to be between 15.45 and 23.83, this value comes from
Donald E. Knuth’s book. The mean of the χ2 values my algorithm found over the span of
tests done was 15.859.

The graph’s x-axis shows the number of
times the algorithm was used to generate
20 bits and sum them, we’ll call this N. The
y-axis shows ten different χ2 values calcu-
lated by taking ten different runs at N to
show the spread in the results.

Frequency Test

The frequency test is designed to ensure that the data generated by the pesudorandom
number generator is uniformly distributed. This algorithm should is expected to generate
a uniform distribution of 0’s and 1’s.

The below two graphs show the frequency of 1’s and 0’s with the red graph being
the 1’s and the green graph the 0’s. Both of these graphs behave as expected, where with
a lower number of bits generated we have a larger spread of values, but as the number of
bits generated gets larger we see that the frequencies converge to 50% for both 0 and 1.
The mean of the frequency over all the tests is 49.92% for 1 and 50.08% for 0.

Algorithm

static int c u r d i f = 0 ;

int t i m e d i f ()
{

struct t imeva l s t a r t , s top ;

gett imeofday(& s ta r t , NULL) ;
// s leep for 10 microseconds
us l e ep (1 0) ;
gett imeofday(&stop , NULL) ;

int tmp = stop . tv usec − s t a r t . tv usec ;
i f (c u r d i f == tmp)

return 0 ;
else
{

c u r d i f = tmp ;
return 1 ;

}
}

int gen rand ()
{

return t i m e d i f () ˆ (random ()&01) ;
}

Permutations Test

The permutations test checks for randomness by testing an algorithms abil-
ity to uniformly generate all the permutations of length t if we generate n
random numbers and divide them into t partitions. There are 2t possible
t-permutations of 0 and 1, and so the probability that a given t-permutation
will be one particular partition is 1

2t. We multiply this probability by the
number of permutations generated n

t to get the expected number of times
each partition should appear for a given n. I chose to make my partitions of
size 3 and I test the algorithm’s ability to uniformly generate all 8 possible
3-permutations of 0 and 1.

000 001 010 011 100 101 110 111

The graph below shows the χ2 val-
ues for the 3-permutation calcula-
tions for various values of n. The
expected χ2, again from The Art of
Computer Programming: Volume
2, for 7 degrees of freedom is be-
tween 4.255 and 9.037. The mean
of the χ2 values accross the total n
tests is 6.941 which is right in the
50th percentile. Thus the algorithm
generates these permutations with
excellent uniformity.

	Making Random - Cryptography and the Generation of Random Sequences
	Recommended Citation

	tmp.1494030240.pdf.aoC4P

