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Background 

As the healthcare industry transitions toward accountable care and payment reform, 

the ability of health systems to creatively approach caring for patients is imperative. 

Changes in payment systems and a historically fragmented system have resulted in poorly 

coordinated care and shorter lengths of hospital stay. These payment changes, in 

conjunction with poorly coordinated care, have resulted in increased rates of readmission 

to the hospital soon after discharge. It is estimated that nearly one in every five Medicare 

patients returns to the hospital within 30 days of discharge (Rau, 2012). The national rate 

of hospital readmission is approximately 19 percent, but the rate of readmission varies 

throughout the country. This has large implications for hospitals and health systems as 

readmissions are costly and often result in poor outcomes for patients. These 

readmissions, many of which are preventable, are estimated to cost twelve billion dollars 

per year (Medicare Payment Advisory Commission, 2008).  

The current payment system has created little incentive for hospitals to address 

readmissions since readmitted patients generate additional revenue. The Patient 

Protection and Affordable Care Act (ACA) modifies this reimbursement model and has 

dramatically increased attention to reducing hospital readmission rates. Medicare now 

has the authority to cut payments to hospitals when patients are readmitted to the hospital 

within 30 days of discharge. Medicare payments to hospitals could be cut by a maximum 

of one percent in 2013. This percent will increase to two percent in 2014 and to three 

percent in 2015. This penalty will be deducted from each Medicare payment to the 

hospital. Hospitals with high rates of readmission could lose a large amount of revenue, 

highlighting the need for system-wide transformation to address this problem. In Maine, 
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Medicare is currently penalizing ten hospitals for their high rates of readmission. Many 

hospitals are struggling to adhere to the changing requirements for compliance with these 

new rules. In addition, hospitals, as well as many health systems, are dealing with 

financial losses in this economic environment. These Medicare rules, as well as the 

complexities that surround readmissions, mean that hospitals will need to dedicate a vast 

amount of resources to reducing this problem. 

MaineHealth is a healthcare network comprised of eight member hospitals, 

HomeHealth, NordX, Synernet and the Maine Medical Center Physician Hospital 

Organization (MMC PHO). MMC PHO includes a large number of the practicing 

physicians, as well as Maine Medical Partners (MMP), which is a multi-specialty group 

of 300 Primary Care Physicians (PCP) that serves Southern Maine. MMC PHO and 

MaineHealth recently formed the MaineHealth Accountable Care Organization 

(MHACO). Under MHACO, physicians are held accountable for reaching financial and 

quality targets that will achieve better population health. One of the 33 quality measures 

primary care providers are held accountable for is all condition readmission within 30 

days. Therefore, MMP is concerned with ensuring patients are treated in the primary care 

office and that they do not return to the hospital.  

The need to focus on population health is even more critical given the intersection of 

increased regulation from the Centers for Medicare and Medicaid Services (CMS) and 

decreased resources. Many hospital readmissions would be prevented if patients were 

effectively managed within the ambulatory healthcare setting through increased care 

coordination. In addition, those who are consistently readmitted are often the most 

vulnerable members of society: the elderly, the chronically ill, and those with low 
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incomes as they lack consistent, coordinated, and timely care. This population is often 

forced to seek treatment through Emergency Departments (ED) for conditions that could 

be treated in the ambulatory care setting. These individuals do not receive necessary and 

effective care and continue to perpetuate the cycle of ED overuse.  

Many organizations have been trying to decide where to focus their scarce resources 

and have tried to develop a prediction model to identify patients at highest risk for 

readmission. These models use patient variables to try to predict the patient’s risk of 

readmission. Prediction models pose many challenges because there are a multitude of 

factors that lead to a readmission, and each readmission being unique and often very 

complicated. However, there are many models currently being used to predict 

readmission. These models take patient variables and calculate a risk score based on the 

presence or absence of the variables. The variables and number of variables utilized in a 

specific model differ, but there are commonalities among the most popular models. Most 

often, the model’s performance is evaluated based on a c statistic. The c statistic, in 

logistic regression, is a standard test of the predictive accuracy of a model’s performance 

and can range from 0.5 to 1.0, with 1.0 being the highest possible value. A c statistic of 

0.5 would suggest that a model does not perform any better than chance, while the 1.0 

would suggest that the model perfectly predicts the measure of interest.  

By employing a predictive model, providers can better understand their patients’ risks 

and be more prepared to provide the patient with the appropriate treatment and resources. 

With the loss of Medicare revenue and our current economic situation, developing a 

successful model to predict hospital readmission is critical. Finding that model requires 

identifying the variables that are present in readmissions. However, the complexity of 
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readmission, which is often specific and unique to each patient, makes this extremely 

challenging and organizations have been trying to adapt these quickly occurring changes. 

While other industries have used risk prediction models, applying these models to the 

clinical setting of health care has created challenges. To date, there is no standard 

approach to prediction modeling or a model that can fit all of the nuances surrounding a 

patient’s readmission. One problem with this new field is limited use of real-time data. 

Many doctors have to use claims data that can be delayed by weeks or even months. 

However, increased use of Electronic Medical Records (EMR) provides the opportunity 

to use real-time data to inform automated predictive models. With real-time models, 

clinical providers could use the prediction risk of the patient and treat the patient in the 

manner best suited for the patients’ needs at the first hospital admission.  

Patients are extremely vulnerable at discharge and are often confused and lack the 

ability to adhere to all of the instructions given to them. Giving providers the ability to 

fully understand the needs of their patients by alerting them to patients at high-risk of 

readmission is critical in reducing the risk. Understanding the risk could help providers 

better coordinate the discharge planning of the patients and tailor it to their specific needs 

and addressing any issues before the patient leaves the hospital. For example, problems 

with obtaining medication prescribed in the hospital could be anticipated and a solution 

found before discharge. Unfortunately, few models currently used take into account all of 

the medical and social factors that often cause readmissions (Kansagara, et al., 2011). 
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Practical Application of Predicting Readmissions: Maine Medical 
Partners (MMP) 

MMP, which is part of the MaineHealth healthcare network, developed a Care 

Transition Program (CTP) in response to an identified gap in effectively transitioning 

patients from the hospital to the home and the need for coordinated care within MHACO. 

This program was created to meet the needs of the patients that they serve more 

effectively by placing telephone calls to patients that are recently discharged from Maine 

Medical Center. During the telephone conversation, the care transition nurse completes 

medication reconciliation, alerts the PCP of any immediate or alarming problems since 

discharge, and schedules an appointment for the patient to see their PCP.  MMP 

conducted a pilot program that yielded promising results, which showed that the 

telephone calls helped to reduce the number of readmissions.  

The number of discharged patients requiring a transition phone call exceeds the 

resources available. Due to limited resources, MMP developed a semi-automated model 

that categorizes a patient’s risk for readmission as high, medium, or low. This model 

requires manual entry of data to capture a risk score. This model is based on five risk 

variables that were corroborated by the literature on readmission. The variables included 

in the scale are: source of admission (Emergency Department (ED), direct from primary 

care office (PCP), or scheduled), number of hospital visits within the last six months, 

number of ED visits within the last six months, on more than five medications, and any 

problem medications. Because this model is not automated within a patient’s chart, the 

discharge nurse has to manually read through the patient’s chart and then enter data into a 

worksheet that calculates the risk score. For example, if the patient has three to 30 ED 

visits within the last six months, this is considered a higher risk and one point will be 
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added to the overall risk score. The scoring continues through all five variables. A total 

score of zero is given if no risks are found, and one point is added for each risk present 

for each variable.  A total score of three or higher is considered to put a patient at high 

risk for readmission. With this scale, MMP can focus the care transition resources to 

those patients who are determined to be at a high level of readmission. 

Purpose 

The purpose of this Capstone is to inform MMP of evidence for variables that 

effectively predict a patient’s risk of readmission so they will be able to lower their 

readmission rates resulting in improved patient care, decreased costs and reduced hospital 

utilization. This Capstone provides an analysis of predictive variables and concludes with 

a recommendation of variables for MMP to analyze for their predictive model. 

Framework and Methods 

This Capstone was conducted using a systematic literature review to identify 

variables associated with readmission rates. Informative interviews were used to gather 

qualitative information about readmission rates at MMP to answer the following research 

questions: 

1. Is the use of the current variables in the MMP scale supported by the literature? 

2. Are there variables that should be added to the current MMP scale based on 

evidence from the literature and stakeholder interviews? 

The framework for this capstone was based on the systematic review conducted by 

Kansagara that identified two top performing scales for predicting readmission: the 
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Coleman Administrative and Self-Report Model and the Amarasingham Electronic 

Readmission Model. The twelve variables identified in these models formed the basis of 

the literature review. This literature review also incorporated the top three answers found 

by a survey of PCPs at MMP to be the most prominent reasons that their patients are 

readmitted.  

Variables were selected in two top performing scales through a review of the 

literature. The database Ovid MEDLINE was used to search for evidence supporting the 

efficacy of utilizing these variables in a prediction scale. Search terms were each of the 

identified variables used in separate searches and the variable title was used as the major 

header.  To narrow the search results, both hospital readmission and patient readmission 

were included as a secondary search term. The search was limited to articles published 

between the years 2000 to 2013.  

After completing the literature review, interviews were conducted to gather 

evidence for support of the variables. All the interviewees gave verbal consent to be 

interviewed. The interviews were not recorded, but notes were taken and themes were 

coded into categories related to the variables after the interviews were completed. The 

identities of the individuals were kept confidential. The interview questions were not 

related to the interviewees’ job performance or the organization’s performance and 

should not be seen as threatening to the participants. This Capstone received Institutional 

Review Board exemption from the University of Southern Maine for this project. 

Appendix A provides the questions that were asked during the interview.  

Finally, evidence gathered from the literature and through the stakeholder 

interviews was used to identify the efficacy of the current variables and to propose 
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variables that MMP could incorporate into their current prediction model into a 

document.  

Results 

Literature Review Findings 

A total of 172 articles were collected to review, with 126 of the articles excluded, for 

a total of 45 articles used to inform this paper. The criteria used to exclude literature was 

unit-based, disease specific, or regarded as a specific surgery. Dates were also considered 

when analyzing articles with a preference to recently published articles. The inclusion 

criteria for articles selected was analysis completed of the variable, the sample size used 

and the c statistic score. However, for some of the variables, literature was used that had 

a small sample size, often referred to as N, due to the limited research available. The 

table in Appendix B displays the articles that were reviewed to inform this paper. During 

the literature search, it was clear the variables identified through the 2 top performing 

models, referred to as the researched variables, consisted of similarly themed variables. 

Additionally, certain variables did not have evidence that supported the utilization of the 

variable within a predictive model. Therefore, for this Capstone, variables were 

combined, and coded by themes, into one variable referred to as the final variables. To 

view the researched variables and the final variables please see table 1 – “list of 

variables”. 
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Table 1 – List of Variables 

Researched Variables Final Variables 
Limited Social Support 

Limited Social Support 
Single Status 

Self-rated health 
Self-rated health Activities of daily living 

Functional Status 
Age Age 
Sex Gender 

Prior Medical Service Use 
Prior Medical Service Use Number of Prior Admissions 

Presented to ED b/w 6 A and 6 P for index admission 
Problem Diagnosis 

Problem Diagnosis 
Heart Disease 

Cancer 
Diabetes 

Charlson Index Charlson Index 
History of Depression/Anxiety Mental Health 

Medicaid Status 

Low Socioeconomic Status 
Residential Stability 

Medicare Status 
Residence in Lowest SES Quartile 
History of Confirmed Cocaine Use 

Risky Behaviors 
History of Missed Clinic Visit 

Health Literacy Health Literacy 
Problem Medication Problem Medication 

Use of Health System Pharmacy 
Excluded Visual Impairment 

Tabak Mortality Score 
 

Models 

Kansagara and colleagues found that none of the prediction models used to date have 

performed remarkably well at predicting readmission risk (Kansagara, et al., 2011). 
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Through the literature search, other evidence was found that supported this finding. In 

fact, clinical data did not add to risk prediction for readmission, and while clinical factors 

do well at predicting mortality, they do not do well when predicting readmission 

(Hammill, et al., 2011) (Amarasingham, et al., 2010). Additionally, most models 

available are scored around a c statistic of .6. Two factors can be deduced from those 

scores: first, important predictors of readmission are missing from the models and, 

second, non-medical factors have a larger role in the risk of readmission (Giamouzis, et 

al., 2011). This suggests that more testing of models that focus on the inclusion of non-

medical variables is needed. Kansagara and colleagues discussed social factors often 

contribute to readmission, but do not always make it into the final predictive model and 

adding these factors has not been studied extensively (Kansagara, et al., 2011). Kansagara 

found models that assign patients into high and low-risk categories are clinically 

meaningful, demonstrating the benefit of categorizing patients despite the evidence of 

performance of scales.  

Despite that evidence, there are many models being used and the most common 

include: the Coleman Administrative Model, Patients at Risk of Re-hospitalization 

(PARR), LACE Index, Probability of Repeat Admissions (Pra), and Predicting 

Emergency Admissions over the Next Year (PEONY).  

Eric Coleman and Colleagues have developed two models, the Coleman 

Administrative Data Model and a second model which includes the former with the 

addition of self-reported information. The variables included in the first model were: age, 

sex, prior medical services use, Medicaid status, Charlson Index, heart disease, cancer 

and diabetes. The second model incorporates additional data, including: self-reported 
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health, activities of daily living assistance need, visual impairment, and functional status. 

The additional variables improved the model’s c statistic score from 0.77 to 0.83, which 

demonstrates that the addition of the self-reported variables resulted in a more effective 

prediction model (Coleman, Sung-joon, Chomiak, & Kramer, 2004).  

The PARR 1 model, developed by Billings and Colleagues, was built for ease of 

implementation, using data already collected at the time of admission and at the bedside 

of the patient. The model looks at the patient’s history of Congestive Heart Failure, 

Chronic Obstructive Pulmonary Disease (COPD), Diabetes, and Sickle Cell Anemia, 

along with 21 other variables that score patients according to the number of risks they 

have. This model scored a c statistic score of 0.70 (Billings, Blunt, Steventon, Georghiou, 

Lewis, & Bardsley, 2012). Billings has recently developed a model that advances his 

earlier model called PARR 2 that was expanded to include hospitalizations.  The 

Combined Model was formed to include data from other sources whereas PARR 1 and 2 

include only inpatient data (Billings, et al.). The goal in developing a model based on 

data outside of inpatient stays is to begin to look at the general population, not just a 

sample of individuals readmitted, in an attempt to best match resources to the need of the 

population.  

The LACE Index has been cited in published research a number of times. This model 

includes only four variables: length of stay, acuity of admission, Charlson Index, and use 

of ED in the past 6 months (van Walraven, et al., 2010). The simplicity of the model 

makes it easy to use for practitioners, as there is a point system for each variable. If a 

patient scores higher than 11, it is suggested that the patient be referred to case 

management.  Evidence shows that for each one-point increase in the patient’s LACE 
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Index score, the risk of unplanned admission increases by eighteen percent (Au, 

McAlister, Bakal, Ezekowitz, Kaul, & van Walraven, 2012). However, in a study by 

Cotter, only ED use was a predictor of readmission and the overall tool was considered a 

poor predictor (Cotter, Bhalla, Wallis, & Biram, 2012). Some of the criticism of LACE is 

that the tool does not take into consideration the patient’s severity of illness, which can be 

a large factor in the hospitalization and readmission of a patient. 

The Pra model calculates a score for risk of readmission using eight measurements to 

predict the probability of repeat admission. The eight variables include: older age, male, 

poor self-rated health, informal caregiver, history of CAD, diabetes, hospital admission 

within past year,  and more than six doctor visits (Allaudeen, Schnipper, Orav, Wacther, 

& Vidyarthi, 2011). Pra and administrative data were tested for performance and the 

article concluded that combining administrative data and a survey-driven model might be 

helpful in trying to find a more accurate prediction model (Vojta, Vojta, TenHave, 

Amaya, Lavizzo-Mourey, & Asch, 2001).  

The Predicting Emergency Admission over the Next Year (PEONY) model uses a 

number of variables and the final model includes 39 variables. The development of this 

model was different from other models in two aspects: the sample included those aged 

forty and older and was derived from the general population. Many other samples use a 

cohort of those previously readmitted.  

Review of Variables 

In the review of the literature, researchers evaluated several variables to determine 

whether or not they effectively predicted readmission risk. The following section on 

variables is presented in order of support from the literature based on the statistical report 
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given by the study author. Each variable evaluated in each article was identified and was 

then compiled into Table 2 shown below.  This section also contains evidence regarding 

variables collected from the stakeholder interviews. Table 2 displays the variables 

evaluated from the articles evaluated. The first columns refer to what variables were 

found to be significant during quantitative analysis. The second column refers to the 

variables that were quantitatively tested but found to not be significant.  

Table 2 – Variable Table 

  Statistically 
Significant 

Evaluated, but 
not significant  

Problem Diagnosis 31 24 
Prior Medical Service Use 14 8 

History of Depression/Anxiety  10 11 

Age 9 15 
Sex 8 15 

Charlson Score 3 1 
Low Socioeconomic Status 6 5 

Problem Medication  3 2 
Limited Social Support 3 0 

Risky Behavior  3 2 
Self-rated health 3 6 
Health Literacy 0 1 

Visual Impairment  
Excluded from literature 

search Tabak Mortality Score 
Use of Health System Pharmacy 

 

Problem diagnosis 

For this Capstone, problem diagnoses includes some of the most frequently cited 

diagnosis for readmission, which are heart failure (HF), diabetes, Chronic Obstructive 

Pulmonary Disease (COPD), and stroke. Evidence suggests that the problem diagnosis at 
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discharge focuses on too much and due to this complexity, the cause of readmission is 

missed. For example, only 37 percent of HF patients are readmitted for the same 

condition (Krumholz, 2013). That is a small percent of readmissions as 63 percent 

admitted of patients are readmitted for other reasons. Because readmission is so unique 

and complicated, when readmission data is compiled by causes of readmission, heart 

failure is the most frequent readmission, and, therefore, the easiest to target. It is hard to 

ignore focusing in on a specific issue that garners such high of a level of readmission. 

However, there is the need to look at characteristics and variables that transcend all 

diseases.   

• Heart failure is often associated with readmission as patients with heart failure are 

hospitalized over a million times each year and of those patients, almost fifty percent, 

will return to the hospital within six months (Giamouzis, et al., 2011) (Aranda, 

Johnson, & Conti, 2009). Additionally, heart failure was shown to be the cause of 28 

percent of all readmissions (Aranda, Johnson, & Conti, 2009).  

• Diabetes is a common cause of readmission. The medication therapy can increase 

patients’ risk of readmission due to adverse effects (Morrisey, 2003). The expense of 

the therapy can be prohibitive causing patients to not adhere to treatment plans 

because they cannot afford the medication. 

• COPD is the third most common cause of readmission (Sharma, Kou, Freeman, 

Zhang, & Goodwin, 2012). Half of patients with hypercapnia on admission will be 

readmitted to the hospital and seven percent will be readmitted three or more times 

within six months.  
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• The rates of readmission for stroke range from 20 to 27 percent in the first year. In a 

study of 2,603 patients, less than 15 percent survived admission-free five years after 

the initial stroke (Bravata, Ho, Meehan, Brass, & Concato, 2005).   

Prior medical service use 

Much of the evidence suggests that a having a hospital readmission within the past 

year increases the odds of a readmission (Billings, Blunt, Steventon, Georghiou, Lewis & 

Bardsley, 2012). Many models include previous readmission as a variable. In research on 

a prediction model for ED use, the most powerful predictive factor was two or more 

unplanned admissions within the previous year (Giamouzis, et al., 2011). Additionally, 

number of prior admissions was a recurring theme in the interviews, and all of those 

interviewed mentioned the importance.  

There is evidence that access to services during the night or weekend is related to 

PCP offices being closed. In an analysis of over 20,000 patients conducted by Kirby and 

colleagues, there was no significant difference between time or and presentation to the 

ED, which could suggest that access may not be an issue. This study suggested that use of 

the ED was related to the type of care that was needed and suggested that presentation to 

the ED can be related to inability to access specialists through other means, such as 

through primary care. Evidence also suggests that having a PCP is associated with 

readmission risk as those who had a PCP could be sicker and more likely to be readmitted 

(Hasan, 2011). Additionally, much of the care that is provided in the ED can be treated in 

primary care, which suggests that chronic conditions are not being treated and properly 

managed in the appropriate setting.  
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Mental health 

 Mental health can have serious effects on the overall health status of a patient. All 

forms of mental disorders are associated with higher levels of readmission. Mental health 

can impact readmission as those who struggle with mental illness can be less likely to 

have the ability to adhere to treatment (Dossa, Glickman, & Berlowitz, 2011). Many 

providers described history of depression and anxiety as very important, as patients with 

co-existing mental conditions often present at the ED. Depression is present in almost 

half of all patients with heart failure, and while often associated, it is not often regarded 

in treatment or care (Giamouzis, et al., 2011). A positive effect has also been found 

between depression and social support; Frassier-Smith found that depression decreased as 

social support increased. There is also the increase in likelihood of spending increased 

inappropriate days in the hospital (Cornette, D'Hoore, Malhomme, Van Pee, Meert, & 

Swine, 2004). Many articles included in this review have expressed the connection 

between depression and higher rates of readmission. Understanding patient’s mental 

health, especially during discharge, is extremely important.  

Age 

As the age of the patient increases, the risk of readmission increases as well. Age is a 

variable that is easily collected and can help to inform providers of increasing risk of 

readmission as those that are older access a higher level of resources. However, this 

variable creates challenges, as there are those who are chronically ill that utilize many 

resources, but would not be considered in an age group that is at more risk due to their 

younger age.  
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Gender 

In most of the research collected, males are cited as more likely to be readmitted. 

However, there were articles reviewed that showed woman are also at a higher risk of 

readmission.  

Charlson index 

The Charlson Index is a tool that assists in measuring comorbidities and involves 

weighting 17 co-morbid conditions by assigning a number to the comorbidity resulting in 

score which is often referred to as the Charlson score. Comorbidities are increasingly 

common in our population and the literature demonstrates that this is a common factor in 

prediction models. This tool is used frequently for ease of implementation and is 

inclusive of the major disease states that are prevalent in readmission literature. This tool 

can be electronically coded from previous diagnoses within the patient’s medical record. 

For every one-point increase on the patient’s Charlson score, there was a 15 percent 

increase in a poor outcome at discharge (Goldstien, Samsa, Matchar, & Horner, 2004). 

Additionally, for every one-unit increase in comorbidity, the risk for readmission 

increases by 47 percent (Wong, Gan, Burns, Sin, & Eeden, 2008). A recent study found 

that 39 percent of the elderly population had 5 or more non-cardiac comorbidities, where 

4 percent had only heart failure demonstrating the need to treat patients in broader 

contexts, which the Charlson Index does, and is increasingly important in our population 

(Giamouzis, et al., 2011).  Understanding this can help to guide clinical decisions and 

discharge planning. Additionally, by using a tool that is less focused on one specific 

disease state, the whole patient can be assessed.  
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Low socioeconomic status 

 Those living in a low socioeconomic class are at risk for a plethora of health 

problems. This is not a new problem or surprise as a survey conducted in 1989 indicated 

that low socioeconomic status (SES) and poor patient health were predictors of problems 

for patients after discharge (Strunin, Stone, & Jack, 2007) Those with lower SES had 

higher risk of one-year mortality and readmission within one year of discharge. 

Individuals unemployed with lower incomes or residing in deprived areas have higher 

rates of readmission (Rathore, et al., 2006). These patients are more likely to have more 

coexisting conditions than higher income level patients (Wang, Conroy, & Zuckerman, 

2009). Low-income individuals are predisposed to a number of illnesses, often having 

more severe forms of illness when finally arriving for medical help (Wang, Conroy, & 

Zuckerman, 2009). One reason for this is that many individuals with a lower SES delay 

seeking treatment due to a number of factors, such as cost, access, or a lack of insurance.  

In the literature, zip codes were used to understand the SES of patients. In a location 

like Portland, Maine, which has only three zip codes, a different approach may be needed 

to identify what addresses could be considered lower SES. Other identifiers that could be 

utilized are type of insurance such as Medicare or Medicaid. Despite having either 

Medicaid or Medicare access to providers can be an issue; many providers limit the 

number of Medicare or Medicaid patients seen, which results in many patients being 

marginalized to receive treatment at emergency rooms. Patients that have fewer resources 

will have less access to health care services.   
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Problem medication  

Use of many medications is common, especially among the aging population. 

Medications usually have side effects that could cause negative consequences for 

patients; there are medications that have been noted as causing a higher number of 

problems or adverse effects and noted for predictive models, such as the one currently in 

use by MMP. Additionally, polypharmacy refers to those who are taking five or more 

medications. In prediction models, many will use five or more medication to denote a 

high risk of readmission. However, for those 65 and older, the average number of 

medications taken is eight to ten medications (Ferrell, 2011). With eight to ten being the 

average number of medications consumed, raising the number of medications that 

indicates higher risk might be necessary. Being on multiple medications can have 

consequences, such as adverse drug reactions or increases in the likelihood of falls.   

Limited social support 

 Social isolation can be categorized in a number of ways; living alone, marital status, 

social isolation, being single.  However, a critical message is shown throughout the 

different categories: the relationship between social isolation and increased risk of 

readmission. Social support or isolation is often regarded in the literature, but very few 

models incorporate the variable into the final model. Inadequate regard for social needs 

accounts for 36 percent of the missed opportunities in preventable readmission 

(Feigenaum, et al., 2012). The absence of a partner is associated with readmission 

regardless of age. Studies found that those who live alone are three times more likely to 

be readmitted (Murphy, et al., 2008). The greater the degree of social isolation, the 

greater the risk of re-hospitalization; the risk of social isolation in readmission was found 
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to be equivalent to the risk of previous hospital utilization (Rodriquez-Artalejo, et al., 

2006).  Absence of social support was shown to increase readmission, especially among 

woman with additional articles finding clear relationships between lack of social support 

and readmission (Giamouzis, et al., 2011)  (Luttick, Jaarsma, Moser , Sanderman, & van 

Veldhuisen, 2005). On the contrary, having a partner can increase compliance to care 

plans and medication, physical activity, healthy diet and help deal with anxiety, fears, 

adversity and troubles (Gallagher, Luttick, & Jaarsma, 2011). Living alone also has a 

number of implications for patients’ health as those who live alone are more likely to 

smoke, drink, have a second myocardial infarction, present later for issues, and not 

adhere to care plans. Additionally, economic disadvantage and low education are 

associated with living alone, both of which are linked to poorer health outcomes 

(Mitchell, Sadikova, Jack, & Paasche-Orlow, 2012).  

However, other authors point out that being married can be associated with an 

increased risk of readmission (Hasan, 2011). The increased risk is related to the care 

provided; many elderly couples age together in place and it is challenging for the 

caregiver in the relationship to keep up with the duties needed to provide adequate care. 

Secondly, patients who are married may be more likely to be discharged to home despite 

being frail and sick, where those without support at home may be referred to a nursing 

home. Caring for a sick partner can create high levels of stress and depression among 

caregivers can increase risk of hospitalization (Saunder, 2008). An interviewee discussed 

the importance of the support system and understanding what the caregiver has the ability 

to provide, as it was stated that sometimes the caregivers are frailer than the patient. It is 

important for providers to assess the level of care provided at home by a partner.  
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Limited social support was a theme in the interviews and brought up by each 

interviewee. Marital status was discussed and the point was made that incorporating just 

the marital status will not capture the actual home life of patients. The question needs to 

be broader to incorporate the different support systems and lifestyles that the population 

lives in today.  

Risky behaviors 

Amarasingham’s Electronic Readmission model includes variables that can be seen as 

risky health behaviors; which were history of confirmed cocaine use and history of 

missed clinic visits. Substance abuse was discussed in the literature and those with 

substance abuse are more likely to seek care in the ED, which creates care that is 

fragmented and unable to meet the needs of the patients. Studies suggest that those with 

comorbidities that have substance abuse issues are at increased risk of readmission. 

Those with substance abuse are often very complex patients and create challenges to 

medical staff trying to assist with treatment and incorporating this factor into a prediction 

model can help to factor such risks and treat the patient more comprehensively.  

Self-rated health 

Assessments of patients Activities of Daily Living (ADL) can assist providers in 

treating patients as providers can gauge how dependent the patient is on obtaining care 

from others and ensure that the level of care necessary for the patient is available upon 

discharge. Evidence has shown that decreased ability to perform ADL increases 

readmission risk (Cornette, D'Hoore, Malhomme, Van Pee, Meert, & Swine, 2004).  

Functional status can help to predict readmission while also assisting providers to assess 

the care the patient needs, can adhere to and tolerate (Yamada, Shimizu, Suzuki, & 
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Izumi, 2011). Individuals lacking functional ability are 48 percent more likely to be 

readmitted; individuals without self-management skills may be at a similar risk of being 

readmitted (Arbaje, Wolff, Yu, Powe, Anderson , & Boult, 2008). Those who perform 

more tasks independently have lower rates of readmission.  

Health literacy 
Health literacy refers to patients’ ability to understand health information and having 

the ability to make decisions regarding their health care. It is estimated that 26 percent of 

our population has low health literacy and those individuals are at increased risk of 

readmission as well as being extremely vulnerable within our society (Mitchell, 

Sadikova, Jack, & Paasche-Orlow, 2012). Those with low health literacy are 1.5 to three 

times more likely to experience adverse health outcomes, particularly patients with heart 

failure or chronic conditions (Dennison, et al., 2011). Additionally, those with low health 

literacy were 1.71 times more likely to return to ED and 1.67 times more like to be 

readmitted. In this study, low health literacy was associated with using Medicaid, being 

of African-American decent, being unemployed, having a low-income, and being less 

educated. Interestingly, those with low health literacy are more likely to report poor 

patient-doctor communication. 

Qualitative Interview Findings 

Six interviews were conducted with stakeholders that work in the field. There were 

five doctors interviewed; two were ED physicians, a primary care provider, a hospitalist 

and a doctor that is currently working in the research field. There was an ED nurse 

interviewed as well. There were a number of themes from the interviews, as well as new 

findings, that corroborate the literature.  
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As discussed in a few interviews, there is a pressure on providers from hospital 

administration to discharge the patients quickly for financial reasons. One interviewee 

detailed length of stay (LOS) and how it relates to hospital organization. Longer LOS 

could mean the individual’s illness is more severe and the individual is more chronically 

ill, therefore, already at an increased risk of being readmitted. On the contrary, a short 

LOS could lead to an increase in readmission because many of the problems that arise 

occur within a short time period of the original hospitalization. Length of stay was 

discussed in this interview in regards to the hospital system organization and that 

organization structure can influence readmission rates. There is research that 

demonstrates that the number of beds in an area will increase the readmission rate per 

capita. Additionally, areas that have lower bed capacity will have a shorter length of stay 

because the beds are needed to admit other patients. This hospital organization and the 

financial reimbursement systems can influence LOS, however hospitals will now be held 

accountable for readmissions within thirty days and hospital administration will have to 

reorganize their focus to avoid costly and avoidable readmissions.    

One concern expressed during the interview was how fragmented aspects of the care 

transition process are. Hospital discharge was discussed as being a task that falls on 

certain providers as discharge disposition was discussed as being the nurses’ task at 

discharge. Social support or care that a patient has at home, which was also discussed as 

fragmented, often falls on the nursing staff to identify. This is troublesome because many 

providers are involved in caring for the patient, but often do not recognize the importance 

of social support. This interviewee felt the pressure providers are placed under to shorten 

length of stay even in the absence of adequate support at home. A few providers 
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interviewed understand the housing status of patients, but did not understand what 

support was given in the home. Discharge is such a large factor that can cause a 

readmission and extremely important, particularly when coordinating the discharge 

process and making the transition home more efficient. 

One interviewee mentioned an article recently published regarding the theory of post-

hospital acquired syndrome, which is characterized by the time after discharge that 

creates a period of vulnerability for patients (Krumholz, 2013). During the much-

discussed timeframe of 30-day post discharge period, many of these patients are suffering 

from physiological stress of the hospitalization. Krumholz’s article discussed the 

disproportionate attention that is focused on the cause of the hospitalization instead of the 

overall picture of the patient. The stress created by staying in the hospital, having unusual 

sleep patterns, dealing with complicated medical issues and finally, trying to understand 

what the medical institution is trying to get them to do needs more attention. This article 

suggests the need to focus attention to health behaviors post-discharge, such as nutrition, 

sleep, and physical activity, which are more of a cause of readmission than is currently 

being attributed. 

Care coordination plans have been highlighted in the literature and in practice as 

ways to improve care transitions. However, one provider mentioned that care 

coordination plans are not helpful to the provider during an ED visit.  This provider asks 

patients during the visit about their address, employer, marital status, who will provide 

their care, how did they get here, where do they live, and do they smoke or drink. Two 

additional providers like to ask their patients a number of questions regarding their lives 

over the past year. These doctors mentioned addressing issues about spouses, care 
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support, employment, and substance abuse.  The hospitalist interviewed stated that 

psychosocial issues have to be known when treating the patient. However, when talking 

to a PCP, these issues are only known for about half of the patients, and providers often 

lack this information for newer patients. Another aspect of care transitions are the care 

managers that assist with discharging the patient. This provider feels like the skill sets 

differ and accountability per care manager that every patient at MMC is assigned. 

Addressing these shortcomings could increase consistency for other providers who are 

treating the patients.   

Patients’ lack of connection with their own primary care provider was discussed as a 

reason that some patients present to the ED, which is often discussed in the literature. 

One provider mentioned that the cost of going to a PCP’s office is prohibitive for 

patients, and since there is no copayment at the ED, many patients will utilize the ED 

over going to a primary care office. The same provider discussed that the better care the 

patient receives in the ED, the more often patients will return to the ED for treatment. 

Additionally, one doctor pointed out that providers are bad communicators, which creates 

problems for patients when trying to understand the system and may be why some 

patients end up in the ED instead of at their PCP.  

Additional factors that influence patient destination include health literacy effecting 

communication between PCP and patient, and poverty level correlating with ED use as a 

primary healthcare location. Decreased health literacy can impact the relationship with 

providers. Interestingly, four interviewees conveyed health literacy as a problem for 

providers, as there is no assessment, method, or documentation of patients’ health literacy 

levels. One provider mentioned that health literacy is a factor that can be taught to 
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patients, but that is currently not an area of focus or implemented at this time. The social 

determinants of health were a topic in one interview, with a focus on poverty. The 

interviewee stated that poverty is one of the top reasons for readmission, and it integrates 

many of the problems that increase readmission. One interviewee discussed how these 

individuals have trouble navigating the difficult health care system and the complexities 

faced when trying to do so. Due to these factors, many of these patients will present to 

the ED when the healthcare need could have been address in another setting, such as a 

PCP office. Collecting information in the chart was a struggle discussed by providers 

during the interviews. Additionally, the registration sheet that this provider can view to 

see demographic information is not reliable during the ED visit. One interviewee 

discussed struggling with how to determine what the patient understands during that 

interaction as the health literacy of the patient is never evaluated and documented in the 

charts. This interviewee suggested utilizing the Electronic Medical Record (EMR) alerts 

to understand patient’s variables such as health literacy or a language barrier was 

discussed, which could be a great resource for MMP.  

MMP is on the same EMR system as the hospital, called EPIC, which creates great 

potential to increase care coordination and could be very advantageous for MMP. 

Influencing order sets was a suggestion made in an interview. This provider discussed 

using a risk model within EPIC to influence care pathways in options of care, not as an 

absolute in treating care, but as a way to assist providers to incorporate socioeconomic 

information when treating patients. This is suggested in the literature as well as processes 

that identify patients immediately and accurately give providers the opportunity to treat 

the patient with the most appropriate care pathway before the patient is discharged. This 
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immediate identification of risk could influence clinical decisions about care during the 

current hospitalization assisting providers to make decisions about the level of care 

needed and to whom to allocate care coordination resources.  

One interviewee suggested that the new inpatient EPIC system attempts to 

incorporate social factors that can relate to readmission. During the ED visit, the provider 

can check that the patient’s demeanor is either normal or abnormal. If abnormal is 

checked, the provider is prompted with a number of questions regarding visual 

impairment, thought process impaired, and use of a walker, among other identifiers. This 

information would be critical to creating a prediction model. Unfortunately, about 90 

percent of ED providers will indicate that everything is normal in order to move forward 

with the assessment to save time, reduce workload, and avoid asking patients additional 

questions. This is a problem for many reasons; providers have not been educated on the 

importance of capturing these data points and the lack of support for the provider to 

spend the correct amount of time with the patient to obtaining this information, which 

would be extremely helpful to understanding the whole patient. 

 The providers interviewed also made a suggestion regarding care coordination, 

which was that MMP implement an alert that tells providers a care manager is actively 

working on preventing readmission. If an alert is not present, a provider knows to make a 

connection to a care manager for coordinated care. Additionally, a provider would like 

every discharged patient get follow-up call that is built into the system, which speaks to 

the success seen by providers of the MMP program. With many organizations working on 

care transitions, it can be extremely complicated to work together, but ultimately, 

working in a coordinated fashion will be providing the best care for the patient. 
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These interviews added greatly to the literature on variables that was already 

collected while also highlighting the current gaps. There are gaps that were evident in the 

interviews that should be addressed. These gaps include knowledge about their patients’ 

lives that could help to prevent readmissions.  There are also gaps in the collection of 

information that was discussed. The recommendations from providers to ease the 

transition of care from one provider to the next comes at a time when many changes are 

occurring and such changes could be incorporated into what is currently occurring. 

Fixing these gaps, collecting patient information regarding social factors and creating 

alerts for providers, will help to build an electronic prediction model that is embedded 

within the patient’s medical chart.  

Recommendations 

Readmissions have a solid base of literature, but are missing consensus on variables 

that are effective at predicting them. However, based on the literature search and the 

information obtained through stakeholder interviews, I would recommend to MMP to test 

a number of variables to predict readmission including Charlson Index with age, previous 

admissions, social support, mental health, and low SES. Table 3 shows the variables 

currently in use as well as the recommended variables. These variables are very important 

elements that will help predict greater risk in a prediction model and can help providers 

to assist patients to avoid readmission.  
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Table 3 – Suggested Model 

MMP Current Model Suggested Model 

Source of Admission Charlson Index with Age 

Number of Hospital Visits Prior Medical Service Use 

ED Visits in Past Six 
Months Social Support 

Five or More Medications Mental Health 

Problem Medications Low Socio-Economic 
Status 

 

The first research question asks if the variables that MMP is currently using should 

stay in the prediction model.  

• Source of admission was not found to be significant in the literature that was located 

and was not mentioned during the stakeholder interviews and would not be 

recommended for the suggested model.  

• Number of hospital visits and number of ED visits was combined into a final variable 

of prior medical service use and is recommended in the suggested model.  

• Five or more medications and problem medication is challenging, however these two 

variables are not suggested in the final model, as there is evidence suggesting that this 

might not be as relevant as it once was, which was gathered from the interviews. 

Furthermore, there have been interventions that deal with medication reconciliation 

within the hospital and the MMP Care Transitions nurses complete medication 

reconciliation on the phone after patients are discharged. Additionally, the problem 
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medication list might signal someone with a chronic condition, which would be 

captured through the Charlson Index.    

Comorbidities have a great influence on this field in the literature. The Charlson 

Index has been consistently used throughout the past few decades to determine patient’s 

health. This tool has the ability to incorporate age into the score, which is another 

frequent determinant of readmission. This tool incorporates a number of the most 

frequent readmission causes and many of the chronic health problems that were identified 

by providers in the MMP physician survey. Comorbidities are a critical piece of the 

problems with the health of our country, and the ability to distinguish the individuals that 

have one or more comorbidity will be beneficial in the prediction model.  

Prior medical service use, such as previous admissions, are highlighted in the 

literature and is often found to be significant and included in final prediction models. It 

was also one of the themes of the stakeholder interviews. There is not a great consensus 

on the time period to incorporate into the model. MMP is currently using the time period 

of previous six months and the LACE tool also incorporates the same time period in the 

model. However, it would be useful for the time period to be expanded to a year. It is 

important to think about the disease state and incorporate the trend of the disease and 

patient utilization patterns. There may be a benefit in testing utilization without a time 

period to increase the inclusion of patients as a small percent of the population us a large 

amount of services. Therefore it might make it more meaningful to exclude a defined 

time period and analyze all patients that utilize a high level of services. Analyzing these 

patients for inclusion in the predictive could focus more resources on this population and 

begin to see a difference in utilization patterns. 
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Social support is increasingly supported in the literature, but is often lacking in the 

final prediction models. There are a number of ways to try to incorporate social support. 

It can be identified by asking about marital status, living alone, or single status. But as 

one provider interviewed mentioned, the entire picture of the patient’s support at home is 

necessary.  Using one measure, such as marital status, might not show the whole picture 

of home life and support. This data can be pulled directly from an EPIC report. Primary 

care offices and the ED can work to collect this information on arrival to either location. 

This would be a great way to have medical assistants (MA) exert more authority. The 

MAs could ask patients questions about their lives to capture more information in the 

medical chart. Social support is critical to the success of patient, especially when leaving 

the hospital, which is shown in the evidence. This will also give the provider the ability to 

understand the patient and increase discussion about patients’ home life. This could help 

providers develop a better relationship with the patient and could lead to increased patient 

satisfaction.  

Addressing mental health treatment plays an important role in reducing readmission 

occurrence. Many individuals with mental health do not receive coordinated, 

comprehensive care, and often are forced to seek treatment through the ED. With a 

prediction model that incorporates ICD-9 codes that include mental health issues, an 

individual with higher risk could be streamlined to a higher level of care. Depression is 

much more prevalent in those with chronic illnesses and comorbidities and identifying 

that risk will help on the path to better treatment.   

Low socioeconomic status has implications for the overall health of individuals, 

which can mean less access to care and can be prohibitive in obtaining comprehensive 



Variables to Predict Risk of Hospital Readmission 

  34 

care. Incorporating this piece into the scale could help to identifying those at high risk 

and having the ability to connect such patients to more comprehensive services, such as a 

patient center medical home. Low SES is extremely important when attempting to 

achieve higher health care standards and being held accountable for population health. 

Incorporating this into a model can help to get our population better treatment.  

Implementation 

There were a number of gaps identified through this project, some of which have to 

do with the EMR system that is used both in the hospital and at MMP. Another gap has to 

do educating the staff to understand why it is important to know patients background and 

collect information in the patients’ chart to gather this data for the prediction model. It 

may be necessary to have hospital administration champion this project and address the 

problem to show support for staff to spend the appropriate time with patients. With 

financial reimbursements changing, there may be the opportunity to try different 

approaches to providing care to patients, one of which could be longer patient 

appointment to understand the social factors of the patient and document them into the 

medical chart. 

MMP care transition teams could champion efforts to create alerts for providers as 

was expressed during the interviews. The EPIC system has the ability to create alerts for 

providers that could help the MMP care transition team coordinate these aspects of care 

for the providers. MMP could utilize all providers, such as MAs or care transitions 

nurses, to assist in collecting data from the patients during other points of care. MMP 

could add more questions to the care transition phone calls to collect many of the 
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variables suggested.  MMP could also utilize medical assistance and other office staff to 

assist doctors to get the information into the patient’s chart. These care managers could 

assist providers, and the medical record, by having standards to approach the patient with. 

The care manager could help to assist within the medical record by completing an order 

set that was inclusive of a more comprehensive approach to the patient.  Another area 

where MMP could try assist in providing more comprehensive care to patients is during 

the care transitions phone call. These points should be emphasized in every diagnosis or 

discharge and continued to advice given in the PCP office. MMP could also emphasize 

these points with education during the care transition phone call. By taking these issues 

into consideration, and giving providers a better picture of the patients, patients will get 

more comprehensive treatment.   

MMP could work with the EPIC build to incorporate measures and data points to 

capture into the Electronic Medical Record (EMR). MMP will have to advocate for these 

edits or alterations to the flow of EPIC in order for this to occur, but it will be extremely 

important to care coordination and providing the optimum level of care. There are 

currently efforts to build and revise order set. This is the perfect time for MMP to be 

involved and influence what is captured within patient’s medical records. There is the 

potential to collect a number of measures within EPIC and pull from it to create a 

prediction model. MMP can develop a scale that pull data throughout the medical charts, 

either through medical notes or specific identifiers giving the ability to tier patients into 

categories of level of need before the patient leaves the hospital.   

Furthermore, this would create the opportunity to build a prediction model similar to 

the Electronic Readmission Model, which has had much success due to the ability to use 
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real-time data. MMP implementing an electronic prediction model, which is highly 

suggested in the literature, by using the EMR information to benefit care transitions, 

could help reduce the preventable, as well as overall, readmissions to the hospital.   

Limitations 

There are some limitations of the research completed. Many social factors would be 

beneficial in a prediction model, but as mentioned in this research, there is a gap in the 

literature for many of these variables. Many of the articles located in this search 

supported that conclusion. Some of the research articles were outdated, and it would have 

been helpful to have access to more current studies for certain topics. Some of the 

variables of interest also had small samples. Additionally, many of the samples used 

populations that are over 65 and might be different when applied to a younger subset of 

the population. 

Conclusions 

The variables that are recommended in this Capstone expand upon what MMP has 

already built through their experiences and testing. Some of the variables are commonly 

thought of within the medical and transition of care field, such as prior medical service 

use, comorbidity score, age and mental health. However, other variables incorporate 

aspects of the patient’s life that are not typically considered medical, such as social 

support and low socio-economic status. These factors contribute to readmissions and 

should help MMP identify those at higher risk of readmission.  
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This project’s goal was to understand the variables that increased patients’ risk of 

readmission, but through the research for this Capstone, it can be concluded that there are 

aspects of the system that need to be influenced in order to change the rate of 

readmission. MMP is in a great position to influence the system, both on the provider 

level as well as the technology and EPIC side. Implementing new methods is easier for 

providers when they are included in the discussion and decisions when changing practice 

behavior and requirements. MMP has a lot of providers at the table and the ability to help 

educate a large number of providers about why collecting information from patients, like 

these measures, is critical to providing better care.  

With this knowledge, MMP can begin to test these variables to create a formal 

prediction model scale. By adjusting practices and workflows, MMP can collect 

additional data from EPIC. A prediction model could be incorporated using distinct 

variables from the order sets within the Electronic Medical Record while utilizing real-

time data. This will assist providers as they treat the patients in the PCP’s office or 

hospital setting. Giving the providers more information and working with providers to 

help them understand the needs of patients will increase their ability to treat the whole 

patient. Providing better care is necessary, given the timing of all of the changes 

occurring in our health care system and the transformation of reimbursement methods. 

Understanding the issues patients face will help to give better coordinated care in a 

fashion that suits providers’ needs and most importantly, the needs of the patient. With 

this prediction model placing individuals into risk categories of low, medium, and high, 

patients will receive the right level of care that is most appropriate to their needs. It is a 

critical time to identify creative ways to improve population health.   
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Appendix A - Interview Questions 

1.     In your opinion, what are the biggest factors (clinical and non-clinical) when 
individuals present to the emergency room/hospital? 

2.     How often do you know the social factors of the patients, such as housing status, 
marital status or substance abuse issues? 

3.     I’m going to read a list of patient characteristics. For each one, please tell me if it 
is a common problem among patients that you see in the ED or that are readmitted to 
the hospital. 

Limited social support 

  

Problem Diagnosis 
Health Literacy 

Problem Medication 
Self-rated Health 

Activities of daily living assistance need 
Functional status 

Age 
Sex 

Prior medical services use 
Medicaid status 
Charlson Index 

History of depression/anxiety 
Residential stability 

Medicare status 
Use of health system pharmacy 

# of prior admissions 
Presented to ED b/w 6 am & 6pm for index admission 

4.     Is there information about social risks or clinical risks that is not currently 
included in the medical chart that should be included in order to better treat a patient? 

5.     What would it take to implement incorporating patient risk of readmission scores 
in your work/department? What are the barriers? 

6.     Would a tool located within the medical chart that states a patient’s risk of 
readmission be useful for practitioners? 
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Appendix B – Articles Reviewed 

Insert Attached PDF File 



Article Title Source Population and Setting Derivation cohort Validation cohort Outcome Actual Rate Range of Rates
Model 

Discrimination 

Redefining readmission risk factors for general 

medicine patients
Alluden

Dicharges from general 

medicine wards over a 

two year period from June 

1, 2006 to May 31, 2008 

6805 NA 30 Days 17% Not Reported NA

An automated model to identify heart failure 

patients at risk for 30 day readmission or death 

using EMR data

Amarasingham

Patients with CHF 

admitted to large teaching 

hospital between January 

1. 2007 and August 31, 

2008

1029 343 30 Day 24.1 12.2 - 45.7 0.72

Linking electronic health record-extracted 

psychosocial data in real-time to risk of readmission 

for heart failure

Watson 

Patients discharged with 

HF between 2007 and 

2008 

729 NA 30 Day Not Reported Not Reported 0.67

Postdischarge environmental and socioeconomic 

risk factors
Arabeje

Community-dwelling 

Medicare beneficaries 

found from claims for 

2001 to 2002

1351 NA 60 Day 15% Not Reported Not Reported

Current trends in heart failure Aranda

Hospital discharge in 2003 

with implant device or 

rhuematic HF

28919 NA 6-9 Months 60% 51-60 Not Reported

Predictors of early hospital readmission Aujesky

Dicharges from 186 

hospitals in Pennsylvania 

from 2000 - 2002

14426 NA 30 Day 14.6 10.7 - 18.1 Not Reported

Development of a predictive model to identify 

inpatients at risk of re-admission within 30 days of 

discharge

Billings

Hospital Episode Statistics 

from National Health 

Service from April 2008 - 

March 2009 

576868 NA 30 Day Not Reported 47.7 - 88.7 0.7

PARR combined predictive model Billings
Data from Primary Care 

Trust
50% of sample 50% of sample 12 Months Not Reported Not Reported Not Reported

Identifying patients at high risk of emergency 

hospital admissions- a logistic regression analysis
Bottle

Patients with emergcy 

admission to a National 

Health Service hospital 

between 4/2000 and 

3/2001

50% of sample 50% of sample 12 Months 15.4 Not Reported 0.72

Depressive symptoms as a predictor of 6-month 

outcomes and services utilization in elderly medical 

inpatients

Bula

Patients 75 years or older 

admitted to academic 

hospital in Switzerland 

over a six month period

401 NA 6 Months 36% Not Reported NA

Correlates of early hospital readmission or death in 

pt with CHF
Chin

Patients admitted 

nonelectively with 

SOB/fatigue and evidence 

of heart failure in 1993 

and 1994

257 NA 60 Day 31% 0-72 NA

Differential risk factors for early and later hospital 

readmission of older patients
Cornette

Patients age 70 or older 

admitted to two teaching 

hospitals from March 

1998 to December 1998

596 NA 30, 60 and 90 Day 10.7, 12.4, 23.1 10.7 - 23.1 NA

Psychosocial risk factors for hospital readmission in 

copd
Coventry

Patienst with COPD were 

recruited by a respiratory 

specialist between May 

2007 and August 2009 

79 NA 365 Day Not Reported 33 - 76 NA



Adequate health literacy is associated with 

readmission 
Dennison 

Patients admitted to large 

urban teaching hospital 

with primary diagnosis 

CHF

95 NA 30 Day 16 2.3 - 18.3 NA

Diagnoses and timing of 30-day readmissions after 

hospitalization for HF, AMI or Pneumonia
Dharmarjan

2007-2009 Medicare fee-

for-service claims data for 

patients readmitted for 

HF, AMI or Pneumonia

329308 NA 30 Day 24.8, 19.9, 18.3 Not Reported NA

Development and validation of a model for 

predicting emergency admissions over the next year 

(PEONY)

Donnan 

Patients 40 or older with a 

3-year history of 

prescribed drugs or 

hospital admission from 

1996 to 2004

90522 NA 365 Day 12.9 Not Reported 0.8

Association between mental health conditions and 

rehospitalization, mortality, and functional 

outcomes in patients with STROKE following 

inpatient rehabilitation

Dossa

Patients who underwent 

rehab at the Veterans 

Association Facilities in 

2001 

2162 NA 6 Months 27.11 12.9-27.11 NA

Factors contributing to all-cause 30 day 

readmissions
Feigenbam

30 of the most common 

readmission less than 6 

weeks before study 

occuring between 2009 

and 2010 

537 NA
30 day (potentially 

avoidable)
50% NA NA

Socioeconomic status, medicaid coverage, clinical 

comorbidity
Foraker

Atherosclerosis Risk in 

Communities cohort 

participants enrolled 1997 - 

1999 and censored until 

2004

1342 NA
Readmission over time 

period
89 NA NA

Social support and self-care in heart failure Gallagher

Patients over the age of 

18 and who were 

admitted for Heart Failure 

333 NA Social support NA 28 - 42 NA

A simultaneous test of the relationship between 

identified psychosocial risk factors and recurrent 

events in coronary artery disease patients 

Grewal

CAD patients who were 

patients of area 

cardiologists

1268 NA Recurrent event 22.2 NA NA

Hospital readmission in general medicine patients Hassan
Patients discharged from 

six medical facilities
7287 3659 30 day 17.5 5 - 30 0.61

A multipurpose comorbidity scoring system 

performed better than the Charlson index
Holman

Patients admitted to 

hospital between 1989 

and 1996

1118989 NA 12 Months Not Reported Not Reported 0.64

Using routine inpatient data to identify patients at 

risk of hospital readmission
Howell

Patients admitted who 

had at least one chronic 

medical condition 

between 2005 and 2006 

13207 4492 12 Months 45.5 Not Reported 0.65

Association of partner status with heart failure 

patients
Howie-Esquive

Patients admitted to 

California Medical Center 

with primary or secondary 

diagnosis of heart failure  

in 2007 

809 NA 90 day 32 49 - 62 NA



Factors associated with 30-day readmission rates 

after percutaneous coronary intervention
Khawaja

PCI hospitalizations from 

1998 to 2008 at Rochester 

Hospital 

15498 NA 30 day 9.4 Not Reported 0.65

Scheduled and unscheduled hospital readmissions 

among patients with diabetes
Kim

Patients 50 or older with 

primary or secondary 

diagnosis of diabetes 

admitted to California 

hospital between April 

and September 2006

124967 NA 90 day 26.3 NA NA

Development of a model for predicting Inpatient 

hospitalization
Lemke

US Health plan outpatient 

claims data
4.63 million 4.7 million 12 Months NA NA AUC = 0.8

Socioeconomic status and hospital utilization among 

younger adult pneumonia admissions at a Canadian 

hospital.

McGregor

Adult patients less than 65 

years old admitted to a 

large teaching hospital in 

Vancouver

434 NA 30 day 12 NA NA

Health literacy and 30-days postdischarge hospital 

utilization
Mitchell

Secondary data anlysis of 

clincial trial sets which 

included patients over 18 

admitted to a general 

medicine unit at Boston 

Medical Center 

703 NA 30 Day Not Reported NA NA

Influence of drugs, demographics and medical 

history on hospital readmission of elderly patients- a 

predictive model

Morrissey

Unplanned general 

admission to hospital 1997-

1998

487 732 12 Months 40.7 22.8-40.7 AUC= .65

Living alone predicts 30-days hospital readmission 

after coronary artery bypass graft surgery
Murphy

Patients on wait-list for 

CABGS between July 2001 

and April 2004 at Royal 

Melbourne Hospital

181 NA 30 day 14.4 NA NA

Prediction of early readmission in medical inpatients 

using the Probability of Repeated Admission 

instrument

Novonty

Patients 65 and older 

admitted to a Midwestern 

acute care hospital 

1077 NA 41 day 14 NA 0.47

Prediction of hospital readmission Philbin 

Discharges assigned with 

ICD-9 codes for heart 

failure in 1995 in New York 

State

42731 21504 12 Months 21.3 NA 0.62

Socioeconomic status as an independent risk factor 

for hospital readmission for heart failure
Philbin 

Patients discharged more 

than once during January 

to December 1995 with a 

principle diagnosis 

discharge of heart failure

41776 NA Hospital readmission NA 19-23 NA

Health services burden of heart failure Robertson 

Patients admitted at NSW 

Hospitals betwen 2000 

and 2007

29161 NA 28 days / 12 months 27 / 73 11 - 73 NA

Social network as a predictor of hospital 

readmission and mortality among older patients 

with heart failure

Rodriguez-Artelejo

Patients admitted for HF 

emergencies at 4 spanish 

hospitals

371 NA Time to first admission Not Reported Not Reported NA



Health-related quality of life as a predictor of 

hospital readmission or death among patients with 

heart failure

Rodriguez-Artelejo

Patients admitted for HF 

emergencies at 4 spanish 

hospitals

394 NA Time to first admission Not Reported Not Reported NA

Family caregiver support and hospitalizations with 

patients with HF 
Saunders

Patients who had a 

primary diagnosis of HF 

and over 40 years 

41 NA Patient hospitilizations Not Reported Not Reported NA

Risk factors for 30-day readmissin in general 

medicine patients admitted from the ED
Shu

Patients admitted to 

general medicine ward 

from the ED in taiwan 

from 2009- 2010

2698 NA 30 day 16.7 Not Reported NA

Derivation and validation of an index to predict early 

death or unplanned readmission after discharge 

from hospital to the community

Van Waldren 

Medical and surgical 

patients d/c from 11 

hospitals from 2004 -2008 

4812 1000000 30 day 8 Not Reported 0.684

Unplanned readmissions after hospital discharge 

among patients identified as being at high risk for 

readmission using a validated predictive algorithm

Gruneir

Adult patients discharged 

from 6 Toronto hospitals 

in 2007

26045 NA 30 / 90 days 12.6 / 20.9 Not Reported Not Reported

Patient Readmission and Mortality after Colorectal Schneider

Patients with a diagnosis 

of colorectal cancer who 

underwent a colectomy 

between 1987 and 2005

149622 NA 30 Day 13 Not Reported NA

Outpatient Follow-up Visit and 30-Day ED and 

Readmission for COPD 
Sharma

Medicare beneficaries 

with an identifiable pcp 

who were hospitalized 

between 1996 and 2006

62746 NA 30 Day 66.9 8.8 - 10.5 NA
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