

University of Southern Maine USM Digital Commons

Green Infrastructure

New England Environmental Finance Center (NEEFC)

11-2013

The Cost of Green Infrastructure: Worth the Investment?

Martha Sheils New England Environmental Finance Center

Follow this and additional works at: https://digitalcommons.usm.maine.edu/green

Part of the Agricultural Economics Commons, Environmental Design Commons, Environmental Engineering Commons, Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, Finance Commons, Growth and Development Commons, Landscape Architecture Commons, Natural Resources and Conservation Commons, Population Biology Commons, Urban, Community and Regional Planning Commons, and the Urban Studies and Planning Commons

Recommended Citation

Sheils, Martha, "The Cost of Green Infrastructure: Worth the Investment?" (2013). *Green Infrastructure*. 1. https://digitalcommons.usm.maine.edu/green/1

This Conference Proceeding is brought to you for free and open access by the New England Environmental Finance Center (NEEFC) at USM Digital Commons. It has been accepted for inclusion in Green Infrastructure by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

THE COST OF GREEN INFRASTRUCTURE: WORTH THE INVESTMENT?

Martha Sheils Program Manager

New England Environmental Finance Center (NE EFC)

Edmund S. Muskie School of Public Service University of Southern Maine

Infrastructure

BUILT Gray - pipes

Green – LID

NATURAL

Population Growth and Development: 1990 - 2000

(Source, USGS, Reston, VA, 2007)

Land Conversion Impervious Surfaces

THE COST OF GREEN INFRASTRUCTURE: WORTH THE INVESTMENT?

Measuring \$\$\$ saved / spent

- Cost Savings: when a proposed action reduces costs
- Avoided Costs: When an action prevents a future (reasonably certain) cost.

Greenland Meadows Commercial Development, Greenland, NH

Near Impaired Waters/303D (Pickering Brook)

Brownfields site, ideal location

LID Stormwater Design: attenuation, storage, conveyance and treatment

ltem	Conventional Option	LID Option	Cost Difference
MOBILIZATION / DEMOLITION	\$555,500	\$555,500	\$0
SITE PREPARATION	\$167,000	\$167,000	\$0
SEDIMENT / EROSION CONTROL	\$378,000	\$378,000	\$0
EARTHWORK	\$2,174,500	\$2,103,500	-\$71,000
PAVING	\$1,843,500	\$2,727,500	\$884,000
STORMWATER MANAGEMENT	\$2,751,800	\$1,008,800	-\$1,743,000
ADDITIONAL WORK-RELATED ACTIVITY (utilities, lighting, water & sanitary sewer service, fencing, landscaping, etc.)	\$2,720,000	\$2,720,000	\$0
PROJECT TOTAL	\$10,590,300	\$9,660,300	-\$930,000
THE COST OF GREEN INFRASTRUCTURE: WORTH THE INVESTMENT?			STORMWATER CENTER

LID: Lower Cost Approaches to Managing the Largest Environmental Costs Problem for Municipalities

Municipality	Cost Savings of Integrating LID & Conventional	Reference
Kansas City, MO	\$19 million	Odefey, 2012
Portland, OR	\$61 million	Garrison & Hobbs, 2011
Philadelphia, PA	\$1.9-4.5 million annual benefit over 40 years	Stratus Consulting, 2009
New York, NY	\$1.5 billion	NYC DEP, 2011

The Role of Land Use in Adaptation to Increased Precipitation and Flooding: A Case Study in Wisconsin's Lower Fox River Basin, 2011 (89,600 acres)

Evaluating a GI Investment

What if, instead of developing the area, it was retained in green space? what would be the floodplain protection costs and benefits?

<u>COSTS</u>

BENEFITS

Purchase of land or purchase of conservation easement (≈ 60% of cost) Less development = reduced exposure to storm and flood damages = REDUCED ECONOMIC LOSSES

The Hazus Model

•GIS-based FEMA model that estimates damages from flood events

•Contains layers that can map the stream network, flood depth, and estimates \$\$\$\$ damages to buildings in the watershed for various flood events (10, 50, 100, 500 year floods)

How Study Uses Hazus

•Estimate losses in future 2025 scenario WITH development as projected by county, for different flood events (10, 50, 100, and 500 years)

•Estimate losses in alternative 2025 scenario WITH NO development in floodplain, for different flood events (10, 50, 100, and 500 years)

•Compute average annualized losses (AAL) for each scenario

DIFFERENCE = an estimate of ANNUAL BENEFITS from preserving land from development

Estimated Benefits and Costs

Average Annualized Loss (AAL)		BENEFITS
Current Land Use (2010)	Future land Use (2025)	
\$19.43 million	\$22.06 million	\$2.63 million
833 parcels; 7,403 acres		

Annualized Costs:

Fee simple purchase: \$5.1 million Easement purchase: \$3.1 million

costs > benefits

Targeting

3 scenarios for targeting GI investments:

1. FLOOD DEPTH – only parcels > 1 ft mean flood depth in 100-yr flood

2. FLOOD DEPTH & PARCEL SIZE – only parcels that account for 90% of total acre-feet of flooding

3. FLOOD DEPTH, PARCEL SIZE, & COSTS – only parcels below median cost per acre-ft. of flooding (property value as measure of cost)

Comparing Targeting Scenarios to Baseline

Scenario 2: 86% of the acreage at only 23% of cost

Scenario 3: 86% of the acreage at 9.7% of cost

Note: Benefits were not re-calculated. However, these scenarios likely to pass benefit-cost test.

THE COST OF GREEN INFRASTRUCTURE: WORTH THE INVESTMENT?

Flood Mitigation

The difference that open space makes: Hurricane Irene in Vermont

An Assessment of the Economics of Natural and Built Infrastructure for Water Resources in Maine

UNIVERSITY OF

usm

Charles S Colgan PhD Damon Yakovleff MCPD Samuel B. Merrill PhD

May 2013

Avoided Costs of Riverine Flooding in York County with Natural Infrastructure (wetlands)

Three watersheds in York County:

Kennebunk River
Mousam River
Branch Brook

Figure 6: Branch Brook/Merriland River Flood Damage Estimates

Modeling Flood Damages with HAZUS

Estimating the Costs of Conserved Land in Maine

County	Total Acres	Overall Cost / Acre	Standard Deviation	Project Count
Androscoggin	38,533	\$1,028	\$849	5
Aroostook	6,244	\$831	\$865	8
Cumberland	8,813	\$5,947	\$8,345	51
Franklin	28,143	\$818	\$646	10
Hancock	46,582	\$976	\$1,052	11
Kennebec	6,864	\$1,388	\$737	6
Knox	912	\$3,710	\$1,653	8
Lincoln	1,326	\$2,456	\$1,595	9
Oxford	9,651	\$1,255	\$761	10
Penobscot	6,156	\$1,619	\$1,440	12
Piscataquis	243,548	\$755	\$578	8
Sagadahoc	2,991	\$3,142	\$2,275	19
Somerset	64,396	\$1,742	\$1,870	7
Waldo	2,313	\$2,394	\$2,716	10
Washington	83,499	\$2,128	\$2,171	37
York	15,381	\$3,027	\$2,367	25
Total	565,351	\$2,076	\$1,870	236

Maine Natural Resources Conservation Program

A collaboration of The Nature Conservancy, the Maine Department of Environmental Protection and U.S. Army Corps of Engineers.

York County Flood Mitigation HAZUS Analysis

Watershed name	Estimated Present Value of flood losses W/O wetlands (mil \$)	Estimated Present Value of flood losses WITH wetlands (mil \$)	Avoided flood damages (mil \$)	Conservation cost of wetland (mil \$)	Net benefits (mil \$)	B/C Ratio
Kennebunk River	\$87.15	\$15.70	\$71.45	\$1.49	\$69.96	47.95
Mousam River	\$270.50	\$77.53	\$192.97	\$8.67	\$184.30	22.26
Branch Brook	\$4.84	\$1.51	\$3.33	\$4.92	(\$1.59)	0.68
TOTAL	\$362.49	\$94.74	\$267.75	\$15.08	\$252.67	17.76

Providing Drinking Water

Maine Water Districts with Filtration Avoidance Determinations

THE COST OF GREEN INFRASTRUCTURE WORTH THE INVESTMENT?

Maintaining Drinking Water Quality

Catskill Delaware Watershed – water source for NYC

SPENT: \$1.4 billion to preserve land & protect drinking water supplies in the Catskill Mountains

SAVED: \$3 to 6 billion in capital construction costs (PLUS \$250 million every year in operating costs) that it did NOT spend on filtration plants

THE COST OF GREEN INFRASTRUCTURE: WORTH THE INVESTMENT?

Comparison of "Grey" and "Green" costs for Portland Water District under different assumptions

Green / Gray Infrastructure Analysis: Portland Water District Case Study

Infrastructure Options	Quantity	Present Value Costs (millions)
Riparian buffers (acres)	367	\$16.33
Culvert upgrades and replacements (units)	44	\$1.38
Conservation certification (acres)	4,699	\$0.14
Afforestation/ reforestation (acres)	9,395	\$14.67
Conservation easements - 80% forest cover (acres)	13,215	\$11.85
Green infrastructure total		\$44.37
Gray infrastructure (membrane filtration) total		\$155.28
Avoided-cost benefits (gray minus green):		\$110.91

Sebago Lake – water source for Portland Water District

Spend: \$44 million on riparian buffers, culvert upgrades, conservation easements & sustainable management

Save: \$110 million by NOT building a new filtration plant

THE COST OF GREEN INFRASTRUCTURE WORTH THE INVESTMENT?

Is GI worth the investment?

- LID techniques often lead to cost savings when we look at WHOLE PROJECT COSTS
- Natural Infrastructure investments for flood control, drinking water protection and wildlife habitat can yield SIGNIFICANT AVOIDED COSTS and additional co-benefits to communitites

THANK YOU!

ANY QUESTIONS / COMMENTS TO: msheils@usm.maine.edu

New England Environmental Finance Center's Green Infrastructure Resource Directory is available upon request

THE COST OF GREEN INFRASTRUCTURE: WORTH THE INVESTMENT?